间充质干细胞
细胞生物学
微泡
炎症
细胞凋亡
脂多糖
胞外囊泡
生物
流式细胞术
干细胞
小RNA
化学
癌症研究
免疫学
生物化学
基因
作者
Yuan Su,Xiaoxia Song,Jinlong Teng,Xinbei Zhou,Zehua Dong,Ping Li,Yunbo Sun
标识
DOI:10.1016/j.intimp.2021.107408
摘要
Sepsis, as a disease affecting the microcirculation and tissue perfusion, results in tissue hypoxia and multiple organ dysfunctions. Bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated to transfer trivial molecules (proteins/peptides, mRNA, microRNA and lipids) to alleviate sepsis. We sought to define the function of microRNA (miR)-17 carried in BMSC-EVs in sepsis. The purity of the extracted BMSCs was identified and confirmed by detection of the surface markers by flow cytometry, followed by osteoblastic, adipogenic, and chondrocyte differentiation experiments. Subsequently, EVs were collected from the medium of BMSCs. The uptake of PKH-67-labeled BMSC-EVs or EVs carrying cy3-miR-17 by RAW264.7 cells was observed under laser confocal microscopy. Furthermore, a series of gain- and loss-of-function approaches were conducted to test the effects of LPS, miR-17 and BRD4 on the inflammatory factors (IL-1β, IL-6 and TNF-α), number of M1 macrophages and M2 macrophages, inflammatory-related signal pathway factors (EZH2, c-MYC and TRAIL), macrophage proliferation, and apoptosis in sepsis. The survival rates were measured in vivo. BMSC-EVs was internalized by the RAW264.7 cells. BDR4 was verified as a target of miR-17, while the expression pattern of miR-17 was upregulated in BMSC-EVs. MiR-17 carried by BMSC-EVs inhibited LPS-induced inflammation and apoptosis of RAW264.7 cells, but improved the viability of RAW264.7 cells. Next, in vitro experiments supported that miR-17 inhibited LPS-induced inflammation in RAW264.7 cells through BRD4/EZH2/TRAIL axis. BRD4 overexpression reversed the effects of miR-17. Moreover, the therapeutic function of BMSC-EVs carried miR-17 was verified by in vivo experiments. MiR-17 derived from BMSCs-EVs regulates BRD4-mediated EZH2/TRAIL axis to essentially inhibit LPS-induced macrophages inflammation.
科研通智能强力驱动
Strongly Powered by AbleSci AI