Identifying imaging genetics biomarkers in Alzheimer’s disease via integrating graph convolutional neural network and canonical correlation analysis

卷积神经网络 相关性 影像遗传学 典型相关 模式识别(心理学) 神经影像学 计算生物学 图形 功率图分析 阿尔茨海默病神经影像学倡议 深度学习 全基因组关联研究 人工智能 神经科学 计算机科学 生物 遗传学 机器学习 单核苷酸多态性 认知 数学 认知障碍 理论计算机科学 基因 几何学 基因型
作者
Mansu Kim,Xiaohui Yao,Andrew J. Saykin,Jason H. Moore,Qi Long,Dokyoon Kim,Li Shen
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S4) 被引量:2
标识
DOI:10.1002/alz.053900
摘要

Abstract Background Brain imaging genetics is an emerging research topic in the study of Alzheimer’s disease (AD). The conventional approach, such as canonical correlation analysis (CCA), has been widely used to identify imaging genetic associations. A deep learning model has recently been proposed to better understand the roots of the complex association between imaging and genetic measures. We propose a graph convolutional neural network (GCN) with CCA loss function to integrate and identify the complex imaging genetics associations in AD. Method We proposed a spectral GCN approach with CCA loss function (GCN‐CCA) to extract feature representations from imaging and genetics data. Briefly, the graph embeddings on the graph nodes were filtered in the Fourier domain. We used two hidden layers with 64 hidden units for extracting imaging and genetic data. ReLU activations were used after each graph convolution layer. A canonical correlation loss function was optimized based on Adam optimizer. We compared our model with the deep CCA model (DCCA) for AD classification. Result We downloaded data for 310 participants (103 AD and 207 Cognitive Normal [CN]) including neuroimaging and genetic data from the ADNI database. We used average structural connectivity based on the AAL atlas as the graph in our GCN model, three imaging measurements (VBM, FDG, FBR) as initial attributes on the graph nodes. We selected 2,644 candidate SNPs from the GWAS catalog ( https://www.ebi.ac.uk/gwas/ ). The proposed model obtained 82.25 % test accuracy for the AD/CN classification, outperforming the DCCA model (77.41%). For interpretation, we generated the saliency maps using guided gradient backpropagation (Figs 1 and 2). We observed the imaging phenotypes from left middle temporal gyrus, superior temporal, frontal inferior triangularis, putamen, paracentral lobule, frontal medial orbital, and pallidum, and right posterior cingulum, and genetic markers from ABCA13 (rs2163935, rs6955132, rs4024044) and APOE (rs429358) contributed to the AD outcome prediction. Conclusion Here, we demonstrated the utility of GCN‐CCA model and its interpretability. The GCN‐CCA not only obtained higher prediction performance but also highlighted important regions for AD classification. We plan to apply our algorithm to other AD cohorts to see if our algorithm generalizes to independent data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyz完成签到,获得积分10
刚刚
1秒前
大胆大碗完成签到,获得积分20
1秒前
RJM完成签到,获得积分20
2秒前
XSY完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
善学以致用应助麦热穆罕采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助YE采纳,获得10
4秒前
小太阳发布了新的文献求助10
4秒前
5秒前
杨123完成签到,获得积分10
5秒前
隐形曼青应助小吕采纳,获得10
6秒前
kaziwi给kaziwi的求助进行了留言
6秒前
超级水壶发布了新的文献求助10
6秒前
zhangzhirong发布了新的文献求助10
6秒前
哭泣德地完成签到,获得积分10
6秒前
7秒前
Cici发布了新的文献求助10
7秒前
7秒前
李海阳完成签到,获得积分10
7秒前
8秒前
秀丽菠萝完成签到,获得积分10
8秒前
tomato039完成签到,获得积分10
8秒前
巴哒发布了新的文献求助10
9秒前
施宇宙完成签到,获得积分10
9秒前
Michael发布了新的文献求助10
9秒前
9秒前
ghost发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
怦然心动发布了新的文献求助10
11秒前
zhoujunjie完成签到,获得积分10
12秒前
烟花应助lukescholar采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801