清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying imaging genetics biomarkers in Alzheimer’s disease via integrating graph convolutional neural network and canonical correlation analysis

卷积神经网络 相关性 影像遗传学 典型相关 模式识别(心理学) 神经影像学 计算生物学 图形 功率图分析 阿尔茨海默病神经影像学倡议 深度学习 全基因组关联研究 人工智能 神经科学 计算机科学 生物 遗传学 机器学习 单核苷酸多态性 认知 数学 认知障碍 理论计算机科学 基因 几何学 基因型
作者
Mansu Kim,Xiaohui Yao,Andrew J. Saykin,Jason H. Moore,Qi Long,Dokyoon Kim,Li Shen
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S4) 被引量:2
标识
DOI:10.1002/alz.053900
摘要

Abstract Background Brain imaging genetics is an emerging research topic in the study of Alzheimer’s disease (AD). The conventional approach, such as canonical correlation analysis (CCA), has been widely used to identify imaging genetic associations. A deep learning model has recently been proposed to better understand the roots of the complex association between imaging and genetic measures. We propose a graph convolutional neural network (GCN) with CCA loss function to integrate and identify the complex imaging genetics associations in AD. Method We proposed a spectral GCN approach with CCA loss function (GCN‐CCA) to extract feature representations from imaging and genetics data. Briefly, the graph embeddings on the graph nodes were filtered in the Fourier domain. We used two hidden layers with 64 hidden units for extracting imaging and genetic data. ReLU activations were used after each graph convolution layer. A canonical correlation loss function was optimized based on Adam optimizer. We compared our model with the deep CCA model (DCCA) for AD classification. Result We downloaded data for 310 participants (103 AD and 207 Cognitive Normal [CN]) including neuroimaging and genetic data from the ADNI database. We used average structural connectivity based on the AAL atlas as the graph in our GCN model, three imaging measurements (VBM, FDG, FBR) as initial attributes on the graph nodes. We selected 2,644 candidate SNPs from the GWAS catalog ( https://www.ebi.ac.uk/gwas/ ). The proposed model obtained 82.25 % test accuracy for the AD/CN classification, outperforming the DCCA model (77.41%). For interpretation, we generated the saliency maps using guided gradient backpropagation (Figs 1 and 2). We observed the imaging phenotypes from left middle temporal gyrus, superior temporal, frontal inferior triangularis, putamen, paracentral lobule, frontal medial orbital, and pallidum, and right posterior cingulum, and genetic markers from ABCA13 (rs2163935, rs6955132, rs4024044) and APOE (rs429358) contributed to the AD outcome prediction. Conclusion Here, we demonstrated the utility of GCN‐CCA model and its interpretability. The GCN‐CCA not only obtained higher prediction performance but also highlighted important regions for AD classification. We plan to apply our algorithm to other AD cohorts to see if our algorithm generalizes to independent data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
15秒前
37秒前
zz完成签到,获得积分10
40秒前
李健的粉丝团团长应助zlh采纳,获得10
41秒前
51秒前
DELI完成签到 ,获得积分10
51秒前
zlh发布了新的文献求助10
55秒前
zz发布了新的文献求助10
1分钟前
田様应助zlh采纳,获得10
1分钟前
1分钟前
1分钟前
alanbike完成签到,获得积分10
2分钟前
swj完成签到,获得积分10
2分钟前
2分钟前
2分钟前
虚幻的赛君完成签到 ,获得积分10
2分钟前
zlh发布了新的文献求助10
2分钟前
hq完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
nolan完成签到 ,获得积分10
3分钟前
3分钟前
jjj发布了新的文献求助10
3分钟前
gincle完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
SiboN完成签到,获得积分10
4分钟前
4分钟前
方白秋完成签到,获得积分10
4分钟前
5分钟前
仁爱的雁芙完成签到,获得积分10
5分钟前
尘染完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
zlh发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
幽默的太阳完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695539
求助须知:如何正确求助?哪些是违规求助? 4065450
关于积分的说明 12569107
捐赠科研通 3764625
什么是DOI,文献DOI怎么找? 2079119
邀请新用户注册赠送积分活动 1107401
科研通“疑难数据库(出版商)”最低求助积分说明 985700