Courier routing and assignment for food delivery service using reinforcement learning

强化学习 水准点(测量) 马尔可夫决策过程 计算机科学 任务(项目管理) 运筹学 收入 订单(交换) 增强学习 过程(计算) 服务(商务) 马尔可夫链 布线(电子设计自动化) 人工智能 马尔可夫过程 数学优化 机器学习 工程类 经济 营销 业务 数学 计算机网络 财务 会计 操作系统 统计 系统工程 地理 大地测量学
作者
Aysun Bozanta,Mücahit Çevik,Can Kavaklioğlu,Eray Mert Kavuk,Ayşe Tosun,Sibel B. Sonuç,Alper Duranel,Ayşe Bener
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:164: 107871-107871 被引量:36
标识
DOI:10.1016/j.cie.2021.107871
摘要

We consider a Markov decision process model mimicking a real-world food delivery service where the objective is to maximize the revenue derived from served requests given a limited number of couriers over a period of time. The model incorporates the courier location, order origin, and order destination. Each courier’s task is to pick-up an assigned order and deliver it to the requested destination. We apply three different approaches to solve this problem. In the first approach, we simplify the model to a one courier case and then solve the resulting model using Q-Learning. The resulting policy is used for each courier in the model with more than one courier based on the assumption that all couriers are identical. In the second approach, we use the same logic, however, the underlying one courier model is solved using Double Deep Q-Networks (DDQN). In the third approach, the extensive model is considered where a system state consists of the positions of all couriers and all orders in the system. We use DDQN to solve the extensive model. Policies generated by these approaches are compared against a benchmark rule-based policy. We observe that the resulting policy of training a single courier with Q-learning accumulates higher rewards than the reward collected by the rule-based policy. In addition, DDQN algorithm for a single courier outperforms both the Q-learning and the rule-based approaches, however, DDQN performance is noted to be highly dependent on the hyper-parameters of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
大道酬勤完成签到,获得积分10
刚刚
彭于晏应助仁爱晓瑶采纳,获得10
1秒前
jessiefuli发布了新的文献求助10
3秒前
3秒前
不想干活应助minmi采纳,获得10
4秒前
Daisy完成签到 ,获得积分10
4秒前
f冯完成签到,获得积分10
4秒前
cmm完成签到,获得积分10
5秒前
5秒前
西红柿关注了科研通微信公众号
5秒前
淡淡绮琴发布了新的文献求助10
5秒前
菌菇发布了新的文献求助10
5秒前
hua发布了新的文献求助10
7秒前
浮游应助赖佳晗采纳,获得10
7秒前
duang完成签到,获得积分10
7秒前
摇阿瑶发布了新的文献求助10
7秒前
8秒前
8秒前
一点不懂完成签到,获得积分10
8秒前
虚心以丹发布了新的文献求助10
8秒前
文艺南松完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
lcy发布了新的文献求助10
10秒前
XZY发布了新的文献求助10
11秒前
11秒前
BoBo应助现实的白开水采纳,获得20
11秒前
12秒前
文艺南松发布了新的文献求助10
12秒前
小福发布了新的文献求助10
12秒前
芒go完成签到,获得积分10
13秒前
14秒前
14秒前
weijie完成签到,获得积分10
14秒前
coolru发布了新的文献求助50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548713
求助须知:如何正确求助?哪些是违规求助? 3979371
关于积分的说明 12320932
捐赠科研通 3648002
什么是DOI,文献DOI怎么找? 2009069
邀请新用户注册赠送积分活动 1044491
科研通“疑难数据库(出版商)”最低求助积分说明 933056