Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany

土地覆盖 遥感 农用地 辅助数据 农业 背景(考古学) 环境科学 土地利用 地理 自然地理学 生态学 生物 考古
作者
Lukas Blickensdörfer,Marcel Schwieder,Dirk Pflugmacher,Claas Nendel,Stefan Erasmi,Patrick Hostert
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112831-112831 被引量:225
标识
DOI:10.1016/j.rse.2021.112831
摘要

Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data. Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭小胖14完成签到,获得积分10
刚刚
深情安青应助呆萌的雪碧采纳,获得10
1秒前
Yangy_发布了新的文献求助10
1秒前
隐形衬衫完成签到 ,获得积分10
2秒前
zychaos发布了新的文献求助10
2秒前
2秒前
CodeCraft应助熊猫苏采纳,获得10
2秒前
明天肯定学习完成签到,获得积分20
2秒前
Calvin完成签到,获得积分10
3秒前
温暖南莲发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
KSung发布了新的文献求助10
4秒前
4秒前
黄黄完成签到,获得积分20
4秒前
kiki完成签到,获得积分10
5秒前
科研通AI5应助123采纳,获得10
5秒前
桃子完成签到,获得积分10
5秒前
WayneO完成签到,获得积分10
5秒前
万安安完成签到,获得积分10
6秒前
6秒前
ym完成签到,获得积分10
6秒前
Suki发布了新的文献求助10
7秒前
7秒前
lzq完成签到 ,获得积分10
7秒前
8秒前
我是快乐的小行家完成签到,获得积分10
8秒前
Yangy_完成签到,获得积分10
8秒前
大个应助笑点低的靳采纳,获得30
8秒前
思与省发布了新的文献求助10
8秒前
罗逸发布了新的文献求助10
8秒前
9秒前
9秒前
陶醉大侠完成签到,获得积分10
9秒前
在水一方应助obsession采纳,获得10
9秒前
9秒前
9秒前
Caroline发布了新的文献求助30
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798