Deep learning in optical metrology: a review

计量学 计算机科学 深度学习 人工智能 领域(数学) 人工神经网络 系统工程 机器学习 计算机工程 数据科学 工程类 物理 数学 光学 纯数学
作者
Chao Zuo,Jiaming Qian,Shijie Feng,Wei Yin,Yixuan Li,Pengfei Fan,Jing Han,Qian Kemao,Qian Chen
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:11 (1) 被引量:443
标识
DOI:10.1038/s41377-022-00714-x
摘要

Abstract With the advances in scientific foundations and technological implementations, optical metrology has become versatile problem-solving backbones in manufacturing, fundamental research, and engineering applications, such as quality control, nondestructive testing, experimental mechanics, and biomedicine. In recent years, deep learning, a subfield of machine learning, is emerging as a powerful tool to address problems by learning from data, largely driven by the availability of massive datasets, enhanced computational power, fast data storage, and novel training algorithms for the deep neural network. It is currently promoting increased interests and gaining extensive attention for its utilization in the field of optical metrology. Unlike the traditional “physics-based” approach, deep-learning-enabled optical metrology is a kind of “data-driven” approach, which has already provided numerous alternative solutions to many challenging problems in this field with better performances. In this review, we present an overview of the current status and the latest progress of deep-learning technologies in the field of optical metrology. We first briefly introduce both traditional image-processing algorithms in optical metrology and the basic concepts of deep learning, followed by a comprehensive review of its applications in various optical metrology tasks, such as fringe denoising, phase retrieval, phase unwrapping, subset correlation, and error compensation. The open challenges faced by the current deep-learning approach in optical metrology are then discussed. Finally, the directions for future research are outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日月崇光应助Feng5945采纳,获得20
刚刚
CipherSage应助怡然的便当采纳,获得30
2秒前
2秒前
桐笑发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
研友_VZG7GZ应助meizijiu采纳,获得10
7秒前
顺利静竹完成签到,获得积分20
7秒前
8秒前
8秒前
科研通AI5应助古清采纳,获得10
8秒前
水桶完成签到,获得积分10
9秒前
ding应助淼淼1采纳,获得10
9秒前
10秒前
学术小白完成签到,获得积分10
11秒前
1号选手发布了新的文献求助10
11秒前
天天快乐应助顺利小蝴蝶采纳,获得10
13秒前
zz发布了新的文献求助10
15秒前
Able阿拉基发布了新的文献求助10
15秒前
17秒前
王小豆完成签到,获得积分10
17秒前
Gyy完成签到,获得积分10
18秒前
肖雪依完成签到,获得积分10
19秒前
19秒前
fanyy完成签到 ,获得积分10
20秒前
20秒前
21秒前
Eraaaaa发布了新的文献求助10
22秒前
墨尘发布了新的文献求助30
23秒前
zyw完成签到,获得积分10
23秒前
23秒前
SciGPT应助hxd采纳,获得10
24秒前
枓研通管家完成签到,获得积分10
24秒前
mimosal发布了新的文献求助10
25秒前
Lucas应助南浅采纳,获得10
25秒前
Wind发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110