Ultrasound deep learning for monitoring of flow–vessel dynamics in murine carotid artery

斑点图案 血流 测速 成像体模 生物医学工程 超声波 血流动力学 流速 颈总动脉 动力学(音乐) 动脉 剪应力 颈动脉 材料科学 流量(数学) 物理 医学 机械 光学 声学 内科学
作者
Jun Hong Park,Eunseok Seo,Woorak Choi,Sang Joon Lee
出处
期刊:Ultrasonics [Elsevier]
卷期号:120: 106636-106636 被引量:17
标识
DOI:10.1016/j.ultras.2021.106636
摘要

Several arterial diseases are closely related with mechanical properties of the blood vessel and interactions of flow-vessel dynamics such as mean flow velocity, wall shear stress (WSS) and vascular strain. However, there is an opportunity to improve the measurement accuracy of vascular properties and hemodynamics by adopting deep learning-based ultrasound imaging for flow-vessel dynamics (DL-UFV). In this study, the DL-UFV is proposed by devising an integrated neural network for super-resolved localization and vessel wall segmentation, and it is also combined with tissue motion estimation and flow measurement techniques such as speckle image velocimetry and speckle tracking velocimetry for measuring velocity field information of blood flow. Performance of the DL-UFV is verified by comparing with other conventional techniques in tissue-mimicking phantoms. After the performance verification, in vivo feasibility is demonstrated in the murine carotid artery with different pathologies: aging and diabetes mellitus (DM). The mutual comparison of flow-vessel dynamics and histological analyses shows correlations between the immunoreactive region and abnormal flow-vessel dynamics interactions. The DL-UFV improves biases in measurements of velocity, WSS, and strain with up to 4.6-fold, 15.1-fold, and 22.2-fold in the tissue-mimicking phantom, respectively. Mean flow velocities and WSS values of the DM group decrease by 30% and 20% of those of the control group, respectively. Mean flow velocities and WSS values of the aging group (34.11 cm/s and 13.17 dyne/cm2) are slightly smaller than those of the control group (36.22 cm/s and 14.25 dyne/cm2). However, the strain values of the aging and DM groups are much smaller than those of the control group (p < 0.05). This study shows that the DL-UFV performs better than the conventional ultrasound-based flow and strain measurement techniques for measuring vascular stiffness and complicated flow-vessel dynamics. Furthermore, the DL-UFV demonstrates its excellent performance in the analysis of the hemodynamic and hemorheological effects of DM and aging on the flow and vascular characteristics. This work provides useful hemodynamic information, including mean flow velocity, WSS and strain with high-resolution for diagnosing the pathogenesis of arterial diseases. This information can be used for monitoring progression and regression of atherosclerotic diseases in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助cenghao采纳,获得50
1秒前
aa发布了新的文献求助10
1秒前
lin发布了新的文献求助10
1秒前
虎虎完成签到,获得积分10
1秒前
1秒前
2秒前
jacob258发布了新的文献求助10
3秒前
洋芋锅巴完成签到 ,获得积分10
4秒前
随遇而安应助温良恭俭让采纳,获得10
4秒前
爱听歌的从筠完成签到,获得积分10
5秒前
6秒前
无极微光应助霸气南珍采纳,获得20
6秒前
冷静冰海完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
拾玖应助cenghao采纳,获得50
7秒前
ZLP发布了新的文献求助10
8秒前
研友_Z7XY28发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
CodeCraft应助123采纳,获得30
10秒前
七妈完成签到,获得积分10
10秒前
x9816发布了新的文献求助10
11秒前
11秒前
YYY完成签到,获得积分10
12秒前
乐乐应助Galaxy采纳,获得10
12秒前
杨仲文发布了新的文献求助10
13秒前
清光发布了新的文献求助10
13秒前
科研通AI6应助虎虎采纳,获得10
14秒前
14秒前
小十一完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
JamesYang发布了新的文献求助10
15秒前
ZLP完成签到,获得积分20
15秒前
DS发布了新的文献求助50
16秒前
16秒前
婉君发布了新的文献求助10
17秒前
orixero应助gl6542采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730086
求助须知:如何正确求助?哪些是违规求助? 5321638
关于积分的说明 15317987
捐赠科研通 4876763
什么是DOI,文献DOI怎么找? 2619608
邀请新用户注册赠送积分活动 1569044
关于科研通互助平台的介绍 1525658