An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:160: 106322-106322 被引量:98
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
阿伟完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
英俊的铭应助啊w采纳,获得10
4秒前
4秒前
wxy完成签到,获得积分10
5秒前
墩子完成签到,获得积分10
6秒前
共享精神应助康康星采纳,获得10
6秒前
翘啊发布了新的文献求助20
6秒前
zhanzhanzhan发布了新的文献求助10
6秒前
所所应助Dxc采纳,获得10
7秒前
包容诗槐完成签到,获得积分10
8秒前
WLM发布了新的文献求助10
8秒前
赵倩发布了新的文献求助10
9秒前
10秒前
酷波er应助激动的南烟采纳,获得10
10秒前
orixero应助在下雨采纳,获得10
10秒前
搜集达人应助lll采纳,获得10
10秒前
10秒前
11秒前
123完成签到,获得积分20
11秒前
粽子发布了新的文献求助10
11秒前
CAOHOU应助www258357采纳,获得10
12秒前
Geist完成签到,获得积分10
12秒前
12秒前
12秒前
DIDIDI发布了新的文献求助10
13秒前
小九发布了新的文献求助10
13秒前
xhm完成签到,获得积分10
13秒前
13秒前
Alice完成签到,获得积分10
14秒前
14秒前
bkagyin应助123采纳,获得10
14秒前
14秒前
14秒前
14秒前
思源应助赵倩采纳,获得10
14秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750