Correlation-aided method for identification and gradation of periodicities in hydrologic time series

系列(地层学) 统计 级配 时间序列 自相关 光谱密度 相关系数 数学 计算机科学 地质学 计算机视觉 古生物学
作者
Ping Xie,Linqian Wu,Yan‐Fang Sang,Faith Ka Shun Chan,Jie Chen,Ziyi Wu,Yaqing Li
出处
期刊:Geoscience Letters [Springer Nature]
卷期号:8 (1) 被引量:2
标识
DOI:10.1186/s40562-021-00183-x
摘要

Abstract Identification of periodicities in hydrological time series and evaluation of their statistical significance are not only important for water-related studies, but also challenging issues due to the complex variability of hydrological processes. In this article, we develop a “ Moving Correlation Coefficient Analysis ” (MCCA) method for identifying periodicities of a time series. In the method, the correlation between the original time series and the periodic fluctuation is used as a criterion, aiming to seek out the periodic fluctuation that fits the original time series best, and to evaluate its statistical significance. Consequently, we take periodic components consisting of simple sinusoidal variation as an example, and do statistical experiments to verify the applicability and reliability of the developed method by considering various parameters changing. Three other methods commonly used, harmonic analysis method (HAM), power spectrum method (PSM) and maximum entropy method (MEM) are also applied for comparison. The results indicate that the efficiency of each method is positively connected to the length and amplitude of samples, but negatively correlated with the mean value, variation coefficient and length of periodicity, without relationship with the initial phase of periodicity. For those time series with higher noise component, the developed MCCA method performs best among the four methods. Results from the hydrological case studies in the Yangtze River basin further verify the better performances of the MCCA method compared to other three methods for the identification of periodicities in hydrologic time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团团发布了新的文献求助10
1秒前
1秒前
nns完成签到,获得积分10
1秒前
小火孩完成签到,获得积分10
2秒前
缓慢的书蝶完成签到,获得积分10
2秒前
SYLH应助星黛露采纳,获得10
4秒前
pinellia发布了新的文献求助10
4秒前
5秒前
段段发布了新的文献求助10
5秒前
潇洒的凡松完成签到,获得积分10
7秒前
传奇3应助sdl采纳,获得10
7秒前
277发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
希望天下0贩的0应助hz采纳,获得10
10秒前
nns发布了新的文献求助10
10秒前
乐乐应助66m37采纳,获得10
10秒前
星黛露完成签到,获得积分10
10秒前
陈子旋完成签到,获得积分10
10秒前
11秒前
XY完成签到,获得积分10
11秒前
11秒前
李健应助机智的慕儿采纳,获得10
11秒前
11秒前
aefs发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
jy发布了新的文献求助10
13秒前
SYLH应助程嘉玲采纳,获得10
14秒前
所所应助程嘉玲采纳,获得10
14秒前
超级平凡发布了新的文献求助10
14秒前
14秒前
SYLH应助静心404采纳,获得10
15秒前
现代汽车发布了新的文献求助10
15秒前
执意发布了新的文献求助10
17秒前
简化为完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033