Comorbidity patterns in depression: A disease network analysis using regional hospital discharge records

共病 萧条(经济学) 医学 疾病 精神科 多发病率 内科学 宏观经济学 经济
作者
Hang Qiu,Liya Wang,Xianrong Zeng,Jingping Pan
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:296: 418-427 被引量:19
标识
DOI:10.1016/j.jad.2021.09.100
摘要

Depression is a psychiatric disorder with a high comorbidity burden; however, previous comorbidity studies predominately focused on a few common diseases and relied on self-reported data. We aimed to investigate the comorbid status of depression concerning the entire spectrum of chronic diseases using network analysis.Totally, 22,872 depressed inpatients and one-to-one matched controls were enrolled in the retrospective study. Hospital discharge records were aggregated to measure the comorbidities, where those with a prevalence ≥ 1% were selected for further analysis. Based on the co-occurrence frequency, sex- and age-specific comorbidity networks in depressed patients were constructed and the results were compared with the controls. Louvain algorithm was used to detect the highly interlinked communities.Depressed patients had 4 comorbidities on average, and 84.4% had at least one comorbidity. The comorbidity network in depression cases was more complex than controls (connections of 839 vs. 369). Intricate but distinct communities appeared within the comorbidity network in depressed patients, where the largest community included cerebrovascular diseases, chronic ischaemia heart disease, atherosclerosis and osteoporosis. Sex-specific central diseases existed, and cardiovascular diseases were the major central diseases to both gender. The older the depressed patients, the more severe the central diseases in the comorbidity network.The causality of the observed interactions could not be determined.The application of network analysis on longitudinal healthcare datasets to assess comorbidity patterns can supplement the traditional clinical study approaches. The findings would improve our understanding of depression-related comorbidities and enhance the integrated management of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呢n发布了新的文献求助10
1秒前
Baboonium完成签到,获得积分10
1秒前
无昵称完成签到,获得积分10
2秒前
2秒前
受伤芝麻发布了新的文献求助10
2秒前
优美汉堡发布了新的文献求助10
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
赵哈哈完成签到 ,获得积分10
3秒前
zys完成签到,获得积分10
3秒前
凑阿库娅发布了新的文献求助10
3秒前
LONG完成签到 ,获得积分10
4秒前
Owen应助AI采纳,获得10
4秒前
小小完成签到 ,获得积分10
4秒前
4秒前
阿童木发布了新的文献求助10
4秒前
JamesPei应助白日梦我采纳,获得10
4秒前
Wuhuijing完成签到,获得积分10
4秒前
狂吃五碗饭完成签到,获得积分10
5秒前
Graham完成签到,获得积分10
5秒前
CodeCraft应助整齐的访梦采纳,获得10
5秒前
班小班完成签到,获得积分10
5秒前
小呵点完成签到 ,获得积分10
6秒前
Jindyla完成签到,获得积分10
7秒前
zcw完成签到,获得积分10
7秒前
τ涛发布了新的文献求助10
7秒前
魔女完成签到,获得积分10
8秒前
盏茶轻抿完成签到,获得积分10
9秒前
jor666完成签到,获得积分10
9秒前
复杂的香菱完成签到,获得积分10
9秒前
爱吃火锅的lulu完成签到 ,获得积分10
9秒前
猪猪hero发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI5应助逍遥采纳,获得10
10秒前
锋feng完成签到 ,获得积分10
11秒前
稳重的雅绿完成签到 ,获得积分10
11秒前
小猪找库里完成签到,获得积分10
12秒前
as完成签到,获得积分10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617