Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions

卷积神经网络 计算机科学 分类器(UML) 鉴别器 图形 模式识别(心理学) 数据挖掘 域适应 深度学习 领域(数学分析) 算法 机器学习 人工智能 理论计算机科学 数学 探测器 数学分析 电信
作者
Tianfu Li,Zhibin Zhao,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:195
标识
DOI:10.1109/tim.2021.3075016
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in mechanical fault diagnosis under variable working conditions. In UDA, three types of information, including class label, domain label, and data structure, are essential to bridging the labeled source domain and unlabeled target domain. However, most existing UDA-based methods use only the former two information and ignore the modeling of data structure, which make the information contained in the features extracted by the deep network incomplete. To tackle this issue, a domain adversarial graph convolutional network (DAGCN) is proposed to model the three types of information in a unified deep network and achieving UDA. The first two types of information are modeled by the classifier and the domain discriminator, respectively. In data structure modeling, a convolutional neural network (CNN) is first employed to exact features from input signals. After that, the CNN features are input to the proposed graph generation layer to construct instance graphs by mining the relationship of structural characteristics of samples. Then, the instance graphs are modeled by a graph convolutional network, and the maximum mean discrepancy metric is leveraged to estimate the structure discrepancy of instance graphs from different domains. Experimental results conducted on two case studies demonstrate that the proposed DAGCN can not only obtain the best performance among the comparison methods, but also can extract transferable features for domain adaptation. The code library is available at: https://github.com/HazeDT/DAGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王_发布了新的文献求助10
刚刚
小豆芽儿发布了新的文献求助10
刚刚
文献发布了新的文献求助10
刚刚
非鱼发布了新的文献求助10
刚刚
刚刚
刚刚
跳跃的惮发布了新的文献求助10
刚刚
Solitude_Z完成签到,获得积分10
1秒前
1秒前
1秒前
超帅的萤发布了新的文献求助10
2秒前
KYG发布了新的文献求助10
3秒前
4秒前
4秒前
tian发布了新的文献求助10
4秒前
牛角面包发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
堃kun发布了新的文献求助10
6秒前
7秒前
8秒前
爆米花应助马甲采纳,获得30
8秒前
小胖熊完成签到,获得积分10
8秒前
科目三应助文献采纳,获得10
8秒前
Sea_U发布了新的文献求助10
8秒前
非鱼完成签到,获得积分10
8秒前
9秒前
Ava应助小豆芽儿采纳,获得10
9秒前
千堆雪完成签到,获得积分10
9秒前
9秒前
wyx发布了新的文献求助10
10秒前
bkagyin应助KYG采纳,获得10
10秒前
峰峰峰发布了新的文献求助10
10秒前
11秒前
悦耳的小夏完成签到,获得积分20
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786442
求助须知:如何正确求助?哪些是违规求助? 3332205
关于积分的说明 10254435
捐赠科研通 3047585
什么是DOI,文献DOI怎么找? 1672602
邀请新用户注册赠送积分活动 801424
科研通“疑难数据库(出版商)”最低求助积分说明 760191