Preservation of T-Cell Stemness with a Novel Expansionless CAR-T Manufacturing Process, Which Reduces Manufacturing Time to Less Than Two Days, Drives Enhanced CAR-T Cell Efficacy

T细胞 细胞培养 细胞疗法 体内 细胞毒性T细胞 干细胞 化学 生物 体外 癌症研究 细胞生物学 免疫学 免疫系统 生物化学 生物技术 遗传学
作者
Boris Engels,Xu Zhu,Jennifer Yang,Andrew Price,Akash Sohoni,Andrew M. Stein,Lana Parent,Michael Greene,Matthew J. Niederst,Jeanne Whalen,Elena J. Orlando,Louise M. Treanor,Jennifer L. Brogdon
出处
期刊:Blood [Elsevier BV]
卷期号:138 (Supplement 1): 2848-2848 被引量:22
标识
DOI:10.1182/blood-2021-146246
摘要

Abstract Background: Extended T-cell culture periods in vitro deplete the CAR-T final product of naive and stem cell memory T-cell (T scm) subpopulations that are associated with improved antitumor efficacy. YTB323 is an autologous CD19-directed CAR-T cell therapy with dramatically simplified manufacturing, which eliminates complexities such as long culture periods. This improved T-Charge™ process preserves T-cell stemness, an important characteristic closely tied to therapeutic potential, which leads to enhanced expansion ability and greater antitumor activity of CAR-T cells. Methods: The new T-Charge TM manufacturing platform, which reduces ex vivo culture time to about 24 hours and takes <2 days to manufacture the final product, was evaluated in a preclinical setting. T cells were enriched from healthy donor leukapheresis, followed by activation and transduction with a lentiviral vector encoding for the same CAR used for tisagenlecleucel. After ≈24 hours of culture, cells were harvested, washed, and formulated (YTB323). In parallel, CAR-T cells (CTL*019) were generated using a traditional ex vivo expansion CAR-T manufacturing protocol (TM process) from the same healthy donor T cells and identical lentiviral vector. Post manufacturing, CAR-T products were assessed in T-cell functional assays in vitro and in vivo, in immunodeficient NSG mice (NOD-scid IL2Rg-null) inoculated with a pre-B-ALL cell line (NALM6) or a DLBCL cell line (TMD-8) to evaluate antitumor activity and CAR-T expansion. Initial data from the dose escalation portion of the Phase 1 study will be reported separately. Results: YTB323 CAR-T products, generated via this novel expansionless manufacturing process, retained the immunophenotype of the input leukapheresis; specifically, naive/T scm cells (CD45RO -/CCR7 +) were retained as shown by flow cytometry. In contrast, the TM process with ex vivo expansion generated a final product consisting mainly of central memory T cells (T cm) (CD45RO +/CCR7 +) (Fig A). Further evidence to support the preservation of the initial phenotype is illustrated by bulk and single-cell RNA sequencing experiments, comparing leukapheresis and final products from CAR-Ts generated using the T-Charge™ and TM protocols. YTB323 CAR-T cell potency was assessed in vitro using a cytokine secretion assay and a tumor repeat stimulation assay, designed to test the persistence and exhaustion of the cell product. YTB323 T cells exhibited 10- to 17-fold higher levels of IL-2 and IFN-γ secretion upon CD19-specific activation compared with CTL*019. Moreover, YTB323 cells were able to control the tumor at a 30-fold lower Effector:Tumor cell ratio and for a minimum of 7 more stimulations in the repeat stimulation assay. Both assays clearly demonstrated enhanced potency of the YTB323 CAR-T cells in vitro. The ultimate preclinical assessment of the YTB323 cell potency was through comparison with CTL*019 regarding in vivo expansion and antitumor efficacy against B-cell tumors in immunodeficient NSG mouse models at multiple doses. Expansion of CD3+/CAR+ T-cells in blood was analyzed weekly by flow cytometry for up to 4 weeks postinfusion. Dose-dependent expansion (C max and AUC 0-21d) was observed for both YTB323 and CTL*019. C max was ≈40-times higher and AUC 0-21d was ≈33-times higher for YTB323 compared with CTL*019 across multiple doses. Delayed peak expansion (T max) of YTB323 by at least 1 week compared with CTL*019 was observed, supporting that increased expansion was driven by the less differentiated T-cell phenotype of YTB323. YTB323 controlled NALM6 B-ALL tumor growth at a lower dose of 0.1×10 6 CAR+ cells compared to 0.5×10 6 CAR+ cells required for CTL*019 (Fig B). In the DLBCL model TMD-8, only YTB323 was able to control the tumors while CTL*019 led to tumor progression at the respective dose groups. This ability of YTB323 cells to control the tumor at lower doses confirms their robustness and potency. Conclusions: The novel manufacturing platform T-Charge™ used for YTB323 is simplified, shortened, and expansionless. It thereby preserves T-cell stemness, associated with improved in vivo CAR-T expansion and antitumor efficacy. Compared to approved CAR-T therapies, YTB323 has the potential to achieve higher clinical efficacy at its respective lower doses. T-Charge™ is aiming to substantially revolutionize CAR-T manufacturing, with concomitant higher likelihood of long-term deep responses. Figure 1 Figure 1. Disclosures Engels: Novartis: Current Employment, Current equity holder in publicly-traded company. Zhu: Novartis: Current Employment, Current equity holder in publicly-traded company. Yang: Novartis: Current Employment, Patents & Royalties. Price: Novartis: Current Employment. Sohoni: Novartis: Current Employment. Stein: Novartis: Current Employment. Parent: Novartis: Ended employment in the past 24 months; iVexSol, Inc: Current Employment. Greene: iVexSol, Inc: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Niederst: Novartis: Current Employment, Current equity holder in publicly-traded company. Whalen: Novartis: Current Employment. Orlando: Novartis: Current Employment. Treanor: Novartis: Current Employment, Current holder of individual stocks in a privately-held company, Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties: no royalties as company-held patents. Brogdon: Novartis Institutes for Biomedical Research: Current Employment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果泥完成签到,获得积分20
刚刚
献忠发布了新的文献求助30
3秒前
怪僻完成签到 ,获得积分10
4秒前
4秒前
4秒前
Orange应助独特天奇采纳,获得10
4秒前
4秒前
桐桐应助hu采纳,获得10
4秒前
那年完成签到,获得积分10
5秒前
5秒前
天真南风发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
ephore应助Ttimer采纳,获得30
7秒前
9秒前
yuan发布了新的文献求助10
9秒前
真实的咖啡完成签到,获得积分10
9秒前
leaolf应助zhang采纳,获得10
10秒前
10秒前
咚咚锵完成签到,获得积分10
12秒前
Lucas应助好好采纳,获得10
12秒前
12秒前
丁香鱼发布了新的文献求助10
13秒前
张晓龙发布了新的文献求助10
13秒前
13秒前
LaTeXer应助怡然的姒采纳,获得30
13秒前
Ning00000发布了新的文献求助10
13秒前
wop111应助ati采纳,获得30
14秒前
乐乐应助子怡采纳,获得10
14秒前
酷波er应助kk采纳,获得10
14秒前
科目三应助yuan采纳,获得10
15秒前
王子影关注了科研通微信公众号
15秒前
rsy发布了新的文献求助10
15秒前
15秒前
qqym完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849666
求助须知:如何正确求助?哪些是违规求助? 4149102
关于积分的说明 12852152
捐赠科研通 3896396
什么是DOI,文献DOI怎么找? 2141642
邀请新用户注册赠送积分活动 1161158
关于科研通互助平台的介绍 1061225