Review of Learning-Based Longitudinal Motion Planning for Autonomous Vehicles: Research Gaps Between Self-Driving and Traffic Congestion

交通拥挤 强化学习 计算机科学 步伐 模仿 运输工程 人工智能 工程类 大地测量学 心理学 社会心理学 地理
作者
Hao Zhou,Jorge Laval,Anye Zhou,Yu Wang,Wenchao Wu,Zhu Qing,Srinivas Peeta
出处
期刊:Transportation Research Record [SAGE]
卷期号:2676 (1): 324-341 被引量:4
标识
DOI:10.1177/03611981211035764
摘要

Self-driving technology companies and the research community are accelerating the pace of use of machine learning longitudinal motion planning (mMP) for autonomous vehicles (AVs). This paper reviews the current state of the art in mMP, with an exclusive focus on its impact on traffic congestion. The paper identifies the availability of congestion scenarios in current datasets, and summarizes the required features for training mMP. For learning methods, the major methods in both imitation learning and non-imitation learning are surveyed. The emerging technologies adopted by some leading AV companies, such as Tesla, Waymo, and Comma.ai, are also highlighted. It is found that: (i) the AV industry has been mostly focusing on the long tail problem related to safety and has overlooked the impact on traffic congestion, (ii) the current public self-driving datasets have not included enough congestion scenarios, and mostly lack the necessary input features/output labels to train mMP, and (iii) although the reinforcement learning approach can integrate congestion mitigation into the learning goal, the major mMP method adopted by industry is still behavior cloning, whose capability to learn a congestion-mitigating mMP remains to be seen. Based on the review, the study identifies the research gaps in current mMP development. Some suggestions for congestion mitigation for future mMP studies are proposed: (i) enrich data collection to facilitate the congestion learning, (ii) incorporate non-imitation learning methods to combine traffic efficiency into a safety-oriented technical route, and (iii) integrate domain knowledge from the traditional car-following theory to improve the string stability of mMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rabbit完成签到,获得积分10
刚刚
爆米花应助xiaojingyang0802采纳,获得10
1秒前
阿然完成签到,获得积分10
1秒前
无限的沅完成签到,获得积分10
1秒前
2秒前
JJBOND完成签到,获得积分10
3秒前
昵称完成签到,获得积分20
3秒前
ASH关闭了ASH文献求助
3秒前
minorcold完成签到,获得积分10
4秒前
缥缈白翠完成签到,获得积分10
4秒前
5秒前
炙热的觅荷完成签到 ,获得积分10
5秒前
京城世界完成签到,获得积分10
5秒前
唐唐88完成签到,获得积分10
5秒前
miao完成签到,获得积分10
5秒前
yab完成签到 ,获得积分10
5秒前
5秒前
杨馨蕊完成签到 ,获得积分10
5秒前
5秒前
隐形元绿发布了新的文献求助10
5秒前
清爽的碧空完成签到,获得积分10
6秒前
lxj关闭了lxj文献求助
6秒前
changaipei完成签到,获得积分10
6秒前
6秒前
sunj完成签到,获得积分10
6秒前
jfz完成签到,获得积分10
7秒前
重要问筠完成签到,获得积分10
8秒前
大可完成签到 ,获得积分10
8秒前
细心觅风发布了新的文献求助20
9秒前
紫文完成签到,获得积分10
9秒前
李狗蛋完成签到,获得积分10
9秒前
安详的甜瓜完成签到,获得积分10
9秒前
认真的雪完成签到,获得积分10
9秒前
红与黑完成签到,获得积分10
9秒前
冷静铅笔完成签到,获得积分10
9秒前
小懒猪完成签到,获得积分10
10秒前
幸福的杨小夕完成签到,获得积分10
10秒前
AntWiser发布了新的文献求助10
10秒前
旸羽发布了新的文献求助10
11秒前
hhh完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5596116
求助须知:如何正确求助?哪些是违规求助? 4681238
关于积分的说明 14819647
捐赠科研通 4656204
什么是DOI,文献DOI怎么找? 2535838
邀请新用户注册赠送积分活动 1503606
关于科研通互助平台的介绍 1469907