A Novel Coupled Reaction-Diffusion System for Explainable Gene Expression Profiling

基因表达谱 仿形(计算机编程) 计算生物学 基因表达 反应扩散系统 基因 生物 计算机科学 化学 遗传学 物理 热力学 程序设计语言
作者
Muhamed Wael Farouq,Wadii Boulila,Zain Hussain,Asrar Rashid,Moiz Ali Shah,Sajid Hussain,Nathan Ng,Dominic Ng,Haris Hanif,M Guftar Shaikh,Aziz Sheikh,Amir Hussain
出处
期刊:Sensors [MDPI AG]
卷期号:21 (6): 2190-2190 被引量:3
标识
DOI:10.3390/s21062190
摘要

Machine learning (ML)-based algorithms are playing an important role in cancer diagnosis and are increasingly being used to aid clinical decision-making. However, these commonly operate as ‘black boxes’ and it is unclear how decisions are derived. Recently, techniques have been applied to help us understand how specific ML models work and explain the rational for outputs. This study aims to determine why a given type of cancer has a certain phenotypic characteristic. Cancer results in cellular dysregulation and a thorough consideration of cancer regulators is required. This would increase our understanding of the nature of the disease and help discover more effective diagnostic, prognostic, and treatment methods for a variety of cancer types and stages. Our study proposes a novel explainable analysis of potential biomarkers denoting tumorigenesis in non-small cell lung cancer. A number of these biomarkers are known to appear following various treatment pathways. An enhanced analysis is enabled through a novel mathematical formulation for the regulators of mRNA, the regulators of ncRNA, and the coupled mRNA–ncRNA regulators. Temporal gene expression profiles are approximated in a two-dimensional spatial domain for the transition states before converging to the stationary state, using a system comprised of coupled-reaction partial differential equations. Simulation experiments demonstrate that the proposed mathematical gene-expression profile represents a best fit for the population abundance of these oncogenes. In future, our proposed solution can lead to the development of alternative interpretable approaches, through the application of ML models to discover unknown dynamics in gene regulatory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ss采纳,获得10
刚刚
刚刚
cc发布了新的文献求助10
1秒前
xxxxx发布了新的文献求助50
1秒前
爆米花应助冰可乐采纳,获得10
1秒前
小灰灰发布了新的文献求助10
1秒前
清爽忆山发布了新的文献求助10
1秒前
lory完成签到,获得积分10
1秒前
2秒前
CodeCraft应助随波逐流采纳,获得10
4秒前
4秒前
5秒前
5秒前
涵涵不韩韩完成签到,获得积分10
5秒前
韩野发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
顾矜应助酷炫元风采纳,获得10
6秒前
7秒前
善学以致用应助ws采纳,获得10
7秒前
8秒前
溫蒂发布了新的文献求助10
8秒前
旺旺发布了新的文献求助10
8秒前
NexusExplorer应助医路微光采纳,获得10
8秒前
西贝白白完成签到,获得积分10
8秒前
简单的晓博完成签到,获得积分10
9秒前
宁羽1发布了新的文献求助10
9秒前
香蕉觅云应助感动的念双采纳,获得10
9秒前
zzz发布了新的文献求助10
9秒前
Crrr发布了新的文献求助10
10秒前
自信芝麻发布了新的文献求助10
10秒前
斑斑发布了新的文献求助10
11秒前
郦乞完成签到,获得积分10
11秒前
波尔完成签到,获得积分10
11秒前
852应助feng采纳,获得10
11秒前
记录吐吐完成签到 ,获得积分10
11秒前
snai1发布了新的文献求助10
12秒前
12秒前
qwe完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090