Trending Paths: A New Semantic-Level Metric for Comparing Simulated and Real Crowd Data

计算机科学 公制(单位) 推论 可视化 数据挖掘 光学(聚焦) 聚类分析 树(集合论) 机器学习 人工智能 情报检索 数学 数学分析 物理 经济 光学 运营管理
作者
He Wang,Jan Ondřej,Carol O’Sullivan
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 1454-1464 被引量:35
标识
DOI:10.1109/tvcg.2016.2642963
摘要

We propose a new semantic-level crowd evaluation metric in this paper. Crowd simulation has been an active and important area for several decades. However, only recently has there been an increased focus on evaluating the fidelity of the results with respect to real-world situations. The focus to date has been on analyzing the properties of low-level features such as pedestrian trajectories, or global features such as crowd densities. We propose the first approach based on finding semantic information represented by latent Path Patterns in both real and simulated data in order to analyze and compare them. Unsupervised clustering by non-parametric Bayesian inference is used to learn the patterns, which themselves provide a rich visualization of the crowd behavior. To this end, we present a new Stochastic Variational Dual Hierarchical Dirichlet Process ( SV-DHDP ) model. The fidelity of the patterns is computed with respect to a reference, thus allowing the outputs of different algorithms to be compared with each other and/or with real data accordingly. Detailed evaluations and comparisons with existing metrics show that our method is a good alternative for comparing crowd data at a different level and also works with more types of data, holds fewer assumptions and is more robust to noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助wqx采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
严逍遥应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
文艺的成危完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
陈饱饱完成签到,获得积分10
2秒前
3秒前
3秒前
wyy完成签到,获得积分10
4秒前
4秒前
自然访彤发布了新的文献求助10
7秒前
Yun yun发布了新的文献求助10
7秒前
临澈发布了新的文献求助10
8秒前
活泼的惜儿完成签到 ,获得积分10
9秒前
JamesPei应助退堂鼓大王采纳,获得10
9秒前
遛遛发布了新的文献求助10
10秒前
肚皮完成签到 ,获得积分0
10秒前
12秒前
12秒前
13秒前
浮游应助甜蜜的若南采纳,获得10
14秒前
哈基米德应助临澈采纳,获得20
14秒前
未来的幻想完成签到,获得积分10
15秒前
乐观乐枫完成签到 ,获得积分10
16秒前
星辰大海应助Yun yun采纳,获得10
18秒前
十一发布了新的文献求助10
20秒前
科目三应助缓慢怜翠采纳,获得10
20秒前
wQ1ng应助lqtnb采纳,获得10
20秒前
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228