Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction

计算机科学 人工神经网络 粒子群优化 人工智能 机器学习 感知器 人口 非线性系统 遗传算法 算法 物理 量子力学 社会学 人口学
作者
Shangce Gao,MengChu Zhou,Yirui Wang,Jiujun Cheng,Hanaki Yachi,Jiahai Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 601-614 被引量:661
标识
DOI:10.1109/tnnls.2018.2846646
摘要

An artificial neural network (ANN) that mimics the information processing mechanisms and procedures of neurons in human brains has achieved a great success in many fields, e.g., classification, prediction, and control. However, traditional ANNs suffer from many problems, such as the hard understanding problem, the slow and difficult training problems, and the difficulty to scale them up. These problems motivate us to develop a new dendritic neuron model (DNM) by considering the nonlinearity of synapses, not only for a better understanding of a biological neuronal system, but also for providing a more useful method for solving practical problems. To achieve its better performance for solving problems, six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, and population-based incremental learning are for the first time used to train it. The best combination of its user-defined parameters has been systemically investigated by using the Taguchi's experimental design method. The experiments on 14 different problems involving classification, approximation, and prediction are conducted by using a multilayer perceptron and the proposed DNM. The results suggest that the proposed learning algorithms are effective and promising for training DNM and thus make DNM more powerful in solving classification, approximation, and prediction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
changping应助科研通管家采纳,获得10
刚刚
刚刚
长不大的幼稚完成签到 ,获得积分10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得20
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
jjwen完成签到 ,获得积分10
刚刚
lalala应助科研通管家采纳,获得10
刚刚
1秒前
炫炫炫完成签到,获得积分10
1秒前
lasalu应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
lalala应助科研通管家采纳,获得10
1秒前
TT发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
lixiang完成签到,获得积分10
2秒前
jessica发布了新的文献求助30
4秒前
4秒前
失眠的科研g关注了科研通微信公众号
4秒前
6秒前
红枫没有微雨怜完成签到 ,获得积分10
6秒前
果果完成签到,获得积分10
7秒前
静文发布了新的文献求助10
7秒前
7秒前
赵正洁完成签到 ,获得积分10
8秒前
Jasper应助优乐美采纳,获得10
8秒前
开放幻丝发布了新的文献求助10
8秒前
安雯完成签到 ,获得积分10
8秒前
8秒前
cici完成签到 ,获得积分10
9秒前
黎怡萱发布了新的文献求助10
10秒前
艾斯完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400