扩散
机制(生物学)
入射(几何)
传输(电信)
非线性系统
感染率
流行病模型
反应扩散系统
传输速率
数学
统计物理学
班级(哲学)
应用数学
计算机科学
物理
人口学
数学分析
医学
人工智能
量子力学
电信
人口
外科
几何学
社会学
摘要
In this paper, we are concerned with an epidemic reaction-diffusion system with nonlinear incidence mechanism of the form $S^qI^p\,(p,\,q>0)$. The coefficients of the system are spatially heterogeneous and time dependent (particularly time periodic). We first establish the $L^\infty$-bounds of the solutions of a class of systems, which improve some previous results in [58]. Based on such estimates, we then study the long-time behavior of the solutions of the system. Our results reveal the delicate effect of the infection mechanism, transmission rate, recovery rate and disease-induced mortality rate on the infection dynamics. Our analysis can be adapted to some other types of infection incidence mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI