Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation

电解质 二甲氧基乙烷 锂(药物) 阳极 电化学 材料科学 无机化学 乙醚 化学工程 相间 溶剂 化学 有机化学 电极 物理化学 内分泌学 工程类 生物 医学 遗传学
作者
Qi Liu,Arthur v. Cresce,Marshall A. Schroeder,Kang Xu,Daobin Mu,Borong Wu,Lili Shi,Feng Wu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:17: 366-373 被引量:143
标识
DOI:10.1016/j.ensm.2018.09.024
摘要

While the solid-electrolyte-interphase (SEI) originating from carbonate-based electrolytes has been extensively studied due to the success of Li-ion batteries, significantly less is known about the SEI formed in ether-based electrolytes, which have become increasingly important for many “beyond-Li ion” batteries, including lithium-sulfur and other lithium metal battery systems. Li dendrite growth and poor cycling efficiencies related to high rate and/or high capacity cycling of lithium are two of the primary factors limiting practical application of Li metal anodes. Similar to graphite in Li-ion batteries, these behaviors are inextricably linked to the mechanism for SEI formation, the resulting interphase chemistry, and the film stability during cycling—all of which require further understanding. Employing both computational and experimental means in this effort, we investigated the reduction chemistry of dimethoxyethane (DME) and 1,3-dioxolane (DOL) on the surface of metallic lithium. We determined that ether-based SEIs are layer-structured, with an outer organic/polymeric layer consisting of lithium oligoethoxides with C-C-O or O-C-O linkages and an inner layer of simple inorganic oxides (Li2O). Remarkably, although Li+ is preferentially solvated by DME, it is the cyclic DOL that primarily contributes to the interphase chemistry. This selective electrochemical reduction of ether solvents is corroborated by precise calculation of transition state structures and energies, providing a valuable guide for future design and manipulation of Li anode interphasial chemistries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
青草蛋糕完成签到 ,获得积分10
2秒前
复杂储发布了新的文献求助10
2秒前
MCst发布了新的文献求助10
3秒前
芝士发布了新的文献求助10
4秒前
4秒前
shuaige完成签到,获得积分20
4秒前
linjunqi发布了新的文献求助10
4秒前
李健应助着急的青枫采纳,获得10
4秒前
5秒前
明越发布了新的文献求助10
5秒前
陈美宏完成签到,获得积分10
5秒前
坦率灵槐应助小白脸采纳,获得10
5秒前
Lilly完成签到,获得积分10
5秒前
yshog完成签到,获得积分10
5秒前
6秒前
6秒前
吉安娜完成签到,获得积分10
6秒前
7秒前
pzh发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
小马甲应助阔达宝莹采纳,获得10
9秒前
lhlhl发布了新的文献求助10
9秒前
9秒前
MCst完成签到,获得积分10
9秒前
10秒前
嘿嘿发布了新的文献求助30
11秒前
12秒前
12秒前
shuaige发布了新的文献求助20
12秒前
杨文静发布了新的文献求助10
12秒前
陈科研发布了新的文献求助10
13秒前
strive完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683