Point defect engineering in thin-film solar cells

光电流 光伏 材料科学 光伏系统 光电子学 带隙 碲化镉光电 晶体缺陷 钙钛矿(结构) 载流子 纳米技术 掺杂剂 兴奋剂 工程物理 化学 电气工程 物理 凝聚态物理 工程类 结晶学
作者
Ji Sang Park,Sunghyun Kim,Zijuan Xie,Aron Walsh
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:3 (7): 194-210 被引量:385
标识
DOI:10.1038/s41578-018-0026-7
摘要

Control of defect processes in photovoltaic materials is essential for realizing high-efficiency solar cells and related optoelectronic devices. Native defects and extrinsic dopants tune the Fermi level and enable semiconducting p–n junctions; however, fundamental limits to doping exist in many compounds. Optical transitions from defect states can enhance photocurrent generation through sub-bandgap absorption; however, these defect states are also often responsible for carrier trapping and non-radiative recombination events that limit the voltage in operating solar cells. Many classes of materials, including metal oxides, chalcogenides and halides, are being examined for next-generation solar energy applications, and each technology faces distinct challenges that could benefit from point defect engineering. Here, we review the evolution in the understanding of point defect behaviour from Si-based photovoltaics to thin-film CdTe and Cu(In,Ga)Se2 technologies, through to the latest generation of halide perovskite (CH3NH3PbI3) and kesterite (Cu2ZnSnS4) devices. We focus on the chemical bonding that underpins the defect chemistry and the atomistic processes associated with the photophysics of charge-carrier generation, trapping and recombination in solar cells. Finally, we outline general principles to enable defect control in complex semiconducting materials. Point defects have a key role in determining the performance of photovoltaic materials. In this Review, we assess defect processes in a range of photovoltaic materials and outline how point defect engineering could be used to improve the efficiency of solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助时光友岸采纳,获得10
刚刚
Hello应助qdr采纳,获得10
3秒前
哈喽酷狗完成签到,获得积分10
3秒前
个性的紫菜应助木木采纳,获得10
4秒前
情怀应助可靠的寒风采纳,获得10
5秒前
可靠的之瑶完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
美莲娜娜子完成签到,获得积分10
7秒前
7秒前
8秒前
橙啊程发布了新的文献求助10
8秒前
小李完成签到,获得积分10
8秒前
CipherSage应助jiujiuji采纳,获得10
9秒前
ceeray23应助王科采纳,获得10
9秒前
10秒前
隐形曼青应助紧张的毛衣采纳,获得30
11秒前
浮游应助林佳一采纳,获得10
11秒前
滚滚完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
包容代芹发布了新的文献求助10
14秒前
15秒前
务实的以松完成签到,获得积分10
16秒前
Me发布了新的文献求助10
18秒前
yynn完成签到,获得积分10
18秒前
ywd发布了新的文献求助10
19秒前
香蕉觅云应助阿泽采纳,获得10
19秒前
浮游应助林佳一采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
飞槐发布了新的文献求助10
19秒前
星辰大海应助lavande采纳,获得10
21秒前
木子完成签到 ,获得积分10
22秒前
22秒前
学术虫完成签到,获得积分10
24秒前
搞怪慕晴完成签到,获得积分10
24秒前
小白脸关注了科研通微信公众号
24秒前
24秒前
鬼笔环肽关注了科研通微信公众号
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858