A new ensemble residual convolutional neural network for remaining useful life estimation

残余物 人工智能 深度学习 卷积神经网络 计算机科学 集成学习 人工神经网络 感知器 机器学习 块(置换群论) 多层感知器 支持向量机 集合预报 反向传播 模式识别(心理学) 算法 数学 几何学
作者
Long Wen,Yan Dong,Liang Gao
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:16 (2): 862-880 被引量:66
标识
DOI:10.3934/mbe.2019040
摘要

Remaining useful life (RUL) estimation is one of the most important component in prognostic health management (PHM) system in modern industry. It defined as the length from the current time to the end of the useful life. With the rapid development of the smart manufacturing, the data-driven RUL approaches have been widely investigated in both academic and engineering fields. Deep learning, which is a new paradigm in machine learning, has been applied in the RUL related fields, and has achieved remarkable results. However, classical deep learning algorithms also encounter the vanishing/exploding gradient problem found in artificial neural network with gradient-based learning methods and backpropagation. In this research, a new residual convolutional neural network (ResCNN) is proposed. ResCNN applies the residual block which skips several blocks of convolutional layers by using shortcut connections, and can help to overcome vanishing/exploding gradient problem. What's more, the ResCNN is enhanced by using the k-fold ensemble method. The proposed ensemble ResCNN is conducted on the C-MAPSS data provided by NASA. The results show that the proposed ensemble ResCNN has achieved significant improvement in both the mean and the standard deviation of the prediction RUL values. The proposed ensemble ResCNN has also compared with other famous machine learning and deep learning methods, including Multilayer Perceptron, Support Vector Machines, Deep Belief Networks, Long Short-Term Memory Model, Convolutional Neural Network and many other methods in literatures. The comparison results show that ensemble ResCNN achieved the start-of-the-art results, and outperform almost all of them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于典发布了新的文献求助10
4秒前
淡淡碧玉完成签到 ,获得积分10
7秒前
坚强的紫菜完成签到 ,获得积分10
9秒前
lhy12345完成签到 ,获得积分10
10秒前
不找了完成签到,获得积分10
10秒前
11秒前
顷梦完成签到,获得积分10
13秒前
15秒前
16秒前
zzcherished发布了新的文献求助10
19秒前
倒立才能看文献完成签到,获得积分10
20秒前
21秒前
飞快的忆雪完成签到 ,获得积分10
21秒前
xiaohao完成签到 ,获得积分10
25秒前
科研通AI5应助sshx采纳,获得10
27秒前
hrj发布了新的文献求助10
27秒前
27秒前
29秒前
31秒前
Wujialu发布了新的文献求助10
32秒前
汉堡包应助xx采纳,获得10
33秒前
Cameron完成签到,获得积分10
33秒前
33秒前
orixero应助苏卿采纳,获得10
34秒前
上官若男应助吴图图采纳,获得10
35秒前
舒适的涑完成签到 ,获得积分10
35秒前
科研通AI5应助minyan采纳,获得10
35秒前
36秒前
36秒前
36秒前
yunna_ning完成签到,获得积分0
36秒前
lucas发布了新的文献求助10
37秒前
38秒前
yiyi发布了新的文献求助10
39秒前
NexusExplorer应助钵钵鸡采纳,获得10
40秒前
鹅逗发布了新的文献求助10
41秒前
王朝发布了新的文献求助10
42秒前
sshx给sshx的求助进行了留言
44秒前
ghmghm9910完成签到 ,获得积分10
45秒前
科研女仆完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782433
求助须知:如何正确求助?哪些是违规求助? 3327874
关于积分的说明 10233601
捐赠科研通 3042859
什么是DOI,文献DOI怎么找? 1670242
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758884