Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning

计算机科学 强化学习 波束赋形 多输入多输出 背景(考古学) 基站 趋同(经济学) 人工神经网络 无线 计算机工程 还原(数学) 无线网络 实时计算 人工智能 计算机网络 电信 几何学 经济 古生物学 数学 生物 经济增长
作者
Chongwen Huang,Ronghong Mo,Chau Yuen
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:38 (8): 1839-1850 被引量:765
标识
DOI:10.1109/jsac.2020.3000835
摘要

Recently, the reconfigurable intelligent surface (RIS), benefited from the breakthrough on the fabrication of programmable meta-material, has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems scaled up beyond massive multiple input multiple output (Massive-MIMO) technology to achieve smart radio environments. Employed as reflecting arrays, RIS is able to assist MIMO transmissions without the need of radio frequency chains resulting in considerable reduction in power consumption. In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL). We first develop a DRL based algorithm, in which the joint design is obtained through trial-and-error interactions with the environment by observing predefined rewards, in the context of continuous state and action. Unlike the most reported works utilizing the alternating optimization techniques to alternatively obtain the transmit beamforming and phase shifts, the proposed DRL based algorithm obtains the joint design simultaneously as the output of the DRL neural network. Simulation results show that the proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks. It is also observed that, appropriate neural network parameter settings will improve significantly the performance and convergence rate of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷先森EPC完成签到,获得积分10
1秒前
YY完成签到 ,获得积分10
1秒前
huan完成签到,获得积分10
1秒前
2秒前
515发布了新的文献求助10
2秒前
蹦蹦发布了新的文献求助10
3秒前
善良的访冬完成签到,获得积分10
4秒前
啊啊啊发布了新的文献求助10
4秒前
wise111发布了新的文献求助10
4秒前
科研通AI2S应助随机昵称采纳,获得10
5秒前
科研通AI2S应助Leo采纳,获得10
6秒前
8秒前
Cris完成签到,获得积分10
8秒前
谦让寄容完成签到,获得积分10
11秒前
wise111完成签到,获得积分20
11秒前
12秒前
NexusExplorer应助515采纳,获得10
12秒前
蹦蹦完成签到,获得积分10
13秒前
He_L完成签到,获得积分10
14秒前
Leo完成签到,获得积分10
14秒前
如意的小笼包完成签到,获得积分10
16秒前
17秒前
keep完成签到,获得积分10
24秒前
超级李包包完成签到,获得积分10
25秒前
英俊的铭应助lll采纳,获得10
26秒前
28秒前
在水一方应助笨笨芯采纳,获得10
30秒前
31秒前
ljs发布了新的文献求助10
31秒前
32秒前
32秒前
lll发布了新的文献求助10
37秒前
37秒前
黄石发布了新的文献求助10
38秒前
认真的代柔完成签到,获得积分10
38秒前
42秒前
haonanchen完成签到,获得积分10
42秒前
Gudeguy完成签到 ,获得积分10
43秒前
黄石完成签到,获得积分10
45秒前
豆豆可发布了新的文献求助10
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445