Medical Risk Prediction

计算机科学
作者
Thomas A. Gerds,Michael W. Kattan
出处
期刊:Chapman and Hall/CRC eBooks [Informa]
被引量:15
标识
DOI:10.1201/9781138384484
摘要

Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient’s individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest. Features: All you need to know to correctly make an online risk calculator from scratch Discrimination, calibration, and predictive performance with censored data and competing risks R-code and illustrative examples Interpretation of prediction performance via benchmarks Comparison and combination of rival modeling strategies via cross-validation Thomas A. Gerds is a professor at the Biostatistics Unit at the University of Copenhagen and is affiliated with the Danish Heart Foundation. He is the author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years. Michael W. Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision-Making Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的火发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
细腻的海露完成签到 ,获得积分10
2秒前
MaskRuin完成签到,获得积分10
2秒前
认真的裙子完成签到,获得积分10
2秒前
2877321934完成签到,获得积分10
2秒前
3秒前
3秒前
小蘑菇应助123采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
linkman应助科研通管家采纳,获得30
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
gexzygg应助科研通管家采纳,获得10
5秒前
gexzygg应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
allen7u发布了新的文献求助10
7秒前
a东发布了新的文献求助10
8秒前
口子口戈完成签到,获得积分10
9秒前
9秒前
fourwoods发布了新的文献求助10
9秒前
现代飞鸟完成签到,获得积分10
11秒前
12秒前
英姑应助yxt采纳,获得10
13秒前
13秒前
斯文败类应助坦率的疾采纳,获得10
13秒前
斯文败类应助YJL采纳,获得10
14秒前
上官若男应助allen7u采纳,获得10
14秒前
小叶子发布了新的文献求助10
15秒前
123发布了新的文献求助10
17秒前
裘文献发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
贺新年关注了科研通微信公众号
20秒前
23秒前
23秒前
所所应助Camellia采纳,获得10
24秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277009
求助须知:如何正确求助?哪些是违规求助? 3805771
关于积分的说明 11924581
捐赠科研通 3452530
什么是DOI,文献DOI怎么找? 1893534
邀请新用户注册赠送积分活动 943620
科研通“疑难数据库(出版商)”最低求助积分说明 847487