PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data

聚类分析 组学 自编码 计算机科学 降维 人工智能 数据挖掘 特征(语言学) 高维数据聚类 机器学习 模式识别(心理学) 生物信息学 计算生物学 生物 深度学习 哲学 语言学
作者
Amina Lemsara,Salima Ouadfel,Holger Fröhlich
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:21 (1) 被引量:39
标识
DOI:10.1186/s12859-020-3465-2
摘要

Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助陈静怡采纳,获得10
1秒前
碧蓝筝完成签到,获得积分10
1秒前
搜集达人应助夜话风陵杜采纳,获得10
4秒前
gengsumin完成签到,获得积分10
4秒前
5秒前
Hello应助嘤嘤怪采纳,获得10
5秒前
5秒前
科研通AI5应助阿松采纳,获得10
5秒前
粗心的绾绾应助木冉采纳,获得20
6秒前
NexusExplorer应助小熊饼干采纳,获得10
6秒前
6秒前
领导范儿应助北冥鱼采纳,获得10
6秒前
爆米花应助luan采纳,获得10
8秒前
哇呀呀发布了新的文献求助10
11秒前
顾矜应助李echo采纳,获得10
13秒前
14秒前
qiaoshan_Jason完成签到,获得积分10
15秒前
15秒前
范之双发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
流氓恐龙完成签到,获得积分10
18秒前
共享精神应助烟酒生采纳,获得10
19秒前
爱听歌半山完成签到,获得积分10
19秒前
20秒前
嘤嘤怪发布了新的文献求助10
20秒前
科研通AI5应助夜无疆采纳,获得10
20秒前
五五哥发布了新的文献求助10
21秒前
北冥鱼发布了新的文献求助10
22秒前
23秒前
luan发布了新的文献求助10
24秒前
科研通AI5应助Zhao采纳,获得30
27秒前
28秒前
29秒前
zhx留下了新的社区评论
30秒前
31秒前
小红发布了新的文献求助10
33秒前
CAAA完成签到,获得积分10
35秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148