Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation

人工智能 模式识别(心理学) 计算机科学 功能磁共振成像 血氧水平依赖性 相关性 白质 分类器(UML) 数学 磁共振成像 神经科学 心理学 几何学 医学 放射科
作者
Jun Wang,Lichi Zhang,Qian Wang,Lei Chen,Jun Shi,Xiaobo Chen,Zuoyong Li,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 3137-3147 被引量:49
标识
DOI:10.1109/tmi.2020.2987817
摘要

The resting-state functional magnetic resonance imaging (rs-fMRI) reflects functional activity of brain regions by blood-oxygen-level dependent (BOLD) signals. Up to now, many computer-aided diagnosis methods based on rs-fMRI have been developed for Autism Spectrum Disorder (ASD). These methods are mostly the binary classification approaches to determine whether a subject is an ASD patient or not. However, the disease often consists of several sub-categories, which are complex and thus still confusing to many automatic classification methods. Besides, existing methods usually focus on the functional connectivity (FC) features in grey matter regions, which only account for a small portion of the rs-fMRI data. Recently, the possibility to reveal the connectivity information in the white matter regions of rs-fMRI has drawn high attention. To this end, we propose to use the patch-based functional correlation tensor (PBFCT) features extracted from rs-fMRI in white matter, in addition to the traditional FC features from gray matter, to develop a novel multi-class ASD diagnosis method in this work. Our method has two stages. Specifically, in the first stage of multi-source domain adaptation (MSDA), the source subjects belonging to multiple clinical centers (thus called as source domains) are all transformed into the same target feature space. Thus each subject in the target domain can be linearly reconstructed by the transformed subjects. In the second stage of multi-view sparse representation (MVSR), a multi-view classifier for multi-class ASD diagnosis is developed by jointly using both views of the FC and PBFCT features. The experimental results using the ABIDE dataset verify the effectiveness of our method, which is capable of accurately classifying each subject into a respective ASD sub-category.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助发文章12138采纳,获得10
刚刚
追雨的风完成签到,获得积分10
1秒前
科研通AI5应助焚心绚华绘采纳,获得30
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
David应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
YY-Bubble发布了新的文献求助10
3秒前
3秒前
3秒前
scm应助科研通管家采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无花果应助英勇靖雁采纳,获得10
4秒前
4秒前
5秒前
6秒前
兰金完成签到,获得积分10
8秒前
蹦跶蹦跶呆完成签到,获得积分10
8秒前
keyanmingongyy完成签到,获得积分20
10秒前
10秒前
11秒前
魏小梅完成签到,获得积分10
11秒前
扶风追梦发布了新的文献求助10
11秒前
小木林完成签到 ,获得积分10
13秒前
缓慢梦秋发布了新的文献求助10
16秒前
16秒前
16秒前
CC发布了新的文献求助10
18秒前
21秒前
科研通AI5应助闪亮喜之郎采纳,获得10
21秒前
曾淋发布了新的文献求助30
22秒前
save发布了新的文献求助10
22秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434