Functional Materials for Memristor‐Based Reservoir Computing: Dynamics and Applications

记忆电阻器 神经形态工程学 油藏计算 计算机科学 非线性系统 物理系统 人工神经网络 计算机体系结构 计算 人工智能 记忆晶体管 分布式计算 电阻随机存取存储器 电子工程 循环神经网络 工程类 电气工程 算法 物理 量子力学 电压
作者
Guohua Zhang,Jingrun Qin,Yue Zhang,Guodong Gong,Ziyu Xiong,Xiangyu Ma,Ziyu Lv,Ye Zhou,Su‐Ting Han
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (42) 被引量:44
标识
DOI:10.1002/adfm.202302929
摘要

Abstract The booming development of artificial intelligence (AI) requires faster physical processing units as well as more efficient algorithms. Recently, reservoir computing (RC) has emerged as an alternative brain‐inspired framework for fast learning with low training cost, since only the weights associated with the output layers should be trained. Physical RC becomes one of the leading paradigms for computation using high‐dimensional, nonlinear, dynamic substrates. Among them, memristor appears to be a simple, adaptable, and efficient framework for constructing physical RC since they exhibit nonlinear features and memory behavior, while memristor‐implemented artificial neural networks display increasing popularity towards neuromorphic computing. In this review, the memristor‐implemented RC systems from the following aspects: architectures, materials, and applications are summarized. It starts with an introduction to the RC structures that can be simulated with memristor blocks. Specific interest then focuses on the dynamic memory behaviors of memristors based on various material systems, optimizing the understanding of the relationship between the relaxation behaviors and materials, which provides guidance and references for building RC systems coped with on‐demand application scenarios. Furthermore, recent advances in the application of memristor‐based physical RC systems are surveyed. In the end, the further prospects of memristor‐implemented RC system in a material view are envisaged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
方寸应助岳阳张震岳采纳,获得10
2秒前
所所应助张凤采纳,获得10
3秒前
122发布了新的文献求助10
3秒前
tianxiong完成签到 ,获得积分10
4秒前
卑鄙的熊发布了新的文献求助10
5秒前
dola发布了新的文献求助10
6秒前
lifenghou完成签到 ,获得积分10
6秒前
7秒前
临诗完成签到,获得积分10
8秒前
10秒前
11秒前
kangkang发布了新的文献求助10
11秒前
11秒前
坚强沛菡完成签到,获得积分10
12秒前
13秒前
空岛与影完成签到,获得积分20
13秒前
13秒前
666完成签到 ,获得积分10
15秒前
15秒前
sqw发布了新的文献求助10
15秒前
初空月儿发布了新的文献求助10
16秒前
林佳一完成签到,获得积分10
16秒前
跳跃幻竹发布了新的文献求助10
16秒前
张凤发布了新的文献求助10
16秒前
空岛与影发布了新的文献求助30
17秒前
YY完成签到 ,获得积分10
17秒前
墨瞳发布了新的文献求助10
17秒前
龄子发布了新的文献求助10
18秒前
18秒前
科目三应助siyilin采纳,获得10
19秒前
20秒前
20秒前
21秒前
王小西完成签到,获得积分10
21秒前
21秒前
tonghau895完成签到 ,获得积分10
23秒前
24秒前
24秒前
雪白的问兰完成签到,获得积分20
24秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833008
求助须知:如何正确求助?哪些是违规求助? 3375402
关于积分的说明 10488891
捐赠科研通 3095006
什么是DOI,文献DOI怎么找? 1704175
邀请新用户注册赠送积分活动 819834
科研通“疑难数据库(出版商)”最低求助积分说明 771661