亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 化学 基因
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr_an完成签到,获得积分10
16秒前
zhaoty完成签到,获得积分10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
scm应助科研通管家采纳,获得30
21秒前
Zy完成签到,获得积分10
29秒前
草木完成签到,获得积分10
48秒前
58秒前
幻梦如歌完成签到,获得积分0
1分钟前
焦糖完成签到,获得积分10
1分钟前
荀煜祺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
isaac发布了新的文献求助10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
2分钟前
CodeCraft应助isaac采纳,获得10
2分钟前
scm应助科研通管家采纳,获得30
2分钟前
2分钟前
Lucky发布了新的文献求助10
2分钟前
2分钟前
搜集达人应助Lucky采纳,获得10
2分钟前
overlood完成签到 ,获得积分10
3分钟前
司马立果发布了新的文献求助10
3分钟前
3分钟前
Mr.Kim发布了新的文献求助10
3分钟前
科研通AI5应助司马立果采纳,获得10
3分钟前
Mr.Kim完成签到,获得积分20
3分钟前
梦残斋完成签到 ,获得积分10
3分钟前
可千万不要躺平呀完成签到,获得积分10
4分钟前
天天快乐应助士成采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
DreamLly发布了新的文献求助10
5分钟前
DreamLly完成签到,获得积分10
5分钟前
loewy完成签到,获得积分10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
6分钟前
司马立果发布了新的文献求助10
6分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251