Multi-Omic Integration of Blood-Based Tumor-Associated Genomic and Lipidomic Profiles Using Machine Learning Models in Metastatic Prostate Cancer

前列腺癌 肿瘤科 恩扎鲁胺 逻辑回归 内科学 医学 雄激素剥夺疗法 队列 癌症 机器学习 人工智能 计算机科学 雄激素受体
作者
Shikai Fang,Shandian Zhe,Hui‐Ming Lin,Arun Azad,Heidi Fettke,Edmond M. Kwan,Lisa G. Horvath,Blossom Mak,Tiantian Zheng,Peng Du,Shidong Jia,Robert M. Kirby,Manish Kohli
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:2
标识
DOI:10.1200/cci.23.00057
摘要

To determine prognostic and predictive clinical outcomes in metastatic hormone-sensitive prostate cancer (mHSPC) and metastatic castrate-resistant prostate cancer (mCRPC) on the basis of a combination of plasma-derived genomic alterations and lipid features in a longitudinal cohort of patients with advanced prostate cancer.A multifeature classifier was constructed to predict clinical outcomes using plasma-based genomic alterations detected in 120 genes and 772 lipidomic species as informative features in a cohort of 71 patients with mHSPC and 144 patients with mCRPC. Outcomes of interest were collected over 11 years of follow-up. These included in mHSPC state early failure of androgen-deprivation therapy (ADT) and exceptional responders to ADT; early death (poor prognosis) and long-term survivors in mCRPC state. The approach was to build binary classification models that identified discriminative candidates with optimal weights to predict outcomes. To achieve this, we built multi-omic feature-based classifiers using traditional machine learning (ML) methods, including logistic regression with sparse regularization, multi-kernel Gaussian process regression, and support vector machines.The levels of specific ceramides (d18:1/14:0 and d18:1/17:0), and the presence of CHEK2 mutations, AR amplification, and RB1 deletion were identified as the most crucial factors associated with clinical outcomes. Using ML models, the optimal multi-omics feature combination determined resulted in AUC scores of 0.751 for predicting mHSPC survival and 0.638 for predicting ADT failure; and in mCRPC state, 0.687 for prognostication and 0.727 for exceptional survival. The models were observed to be superior than using a limited candidate number of features for developing multi-omic prognostic and predictive signatures.Using a ML approach that incorporates multiple omic features improves the prediction accuracy for metastatic prostate cancer outcomes significantly. Validation of these models will be needed in independent data sets in future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
achenghn发布了新的文献求助10
刚刚
小马甲应助liang采纳,获得10
3秒前
6秒前
LL666完成签到 ,获得积分10
7秒前
7秒前
Ava应助miaomiao采纳,获得10
9秒前
10秒前
彭于晏应助祯果粒采纳,获得10
11秒前
11秒前
zhongu发布了新的文献求助10
12秒前
平常的伊应助大大怪采纳,获得10
12秒前
Akim应助小王同志采纳,获得10
12秒前
房谷槐发布了新的文献求助10
17秒前
18秒前
SYLH应助xunl采纳,获得10
18秒前
19秒前
斯文败类应助mgh采纳,获得10
19秒前
cy完成签到,获得积分20
20秒前
听见完成签到,获得积分10
20秒前
大个应助房谷槐采纳,获得10
23秒前
祯果粒发布了新的文献求助10
24秒前
陈俊威完成签到,获得积分10
25秒前
27秒前
淡定的水彤完成签到,获得积分10
31秒前
猫xuan发布了新的文献求助10
32秒前
33秒前
SYLH应助阿良采纳,获得10
35秒前
36秒前
jenningseastera应助cky采纳,获得10
36秒前
37秒前
学术蛔虫完成签到 ,获得积分10
38秒前
lxl发布了新的文献求助10
39秒前
动漫大师发布了新的文献求助10
40秒前
科研通AI2S应助xkxkii采纳,获得10
40秒前
小王同志发布了新的文献求助10
41秒前
42秒前
Cell完成签到 ,获得积分10
46秒前
今后应助Mardragon采纳,获得30
46秒前
46秒前
Kate完成签到,获得积分10
48秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826623
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453002
捐赠科研通 3088482
什么是DOI,文献DOI怎么找? 1699152
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770136