LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR Understanding

激光雷达 隐藏字幕 计算机科学 语言模型 人工智能 遥感 图像(数学) 地理
作者
Senqiao Yang,Jiaming Liu,Ray Zhang,Mingjie Pan,Zoey Guo,Xiaoqi Li,Zehui Chen,Peng Gao,Yandong Guo,Shanghang Zhang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2312.14074
摘要

Recently, Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown promise in instruction following and 2D image understanding. While these models are powerful, they have not yet been developed to comprehend the more challenging 3D physical scenes, especially when it comes to the sparse outdoor LiDAR data. In this paper, we introduce LiDAR-LLM, which takes raw LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs to gain a comprehensive understanding of outdoor 3D scenes. The central insight of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a language modeling problem, encompassing tasks such as 3D captioning, 3D grounding, 3D question answering, etc. Specifically, due to the scarcity of 3D LiDAR-text pairing data, we introduce a three-stage training strategy and generate relevant datasets, progressively aligning the 3D modality with the language embedding space of LLM. Furthermore, we design a View-Aware Transformer (VAT) to connect the 3D encoder with the LLM, which effectively bridges the modality gap and enhances the LLM's spatial orientation comprehension of visual features. Our experiments show that LiDAR-LLM possesses favorable capabilities to comprehend various instructions regarding 3D scenes and engage in complex spatial reasoning. LiDAR-LLM attains a 40.9 BLEU-1 on the 3D captioning task and achieves a 63.1\% classification accuracy and a 14.3\% BEV mIoU on the 3D grounding task. Web page: https://sites.google.com/view/lidar-llm
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xk发布了新的文献求助10
刚刚
1秒前
2秒前
imchenyin发布了新的文献求助10
3秒前
期待未来发布了新的文献求助10
3秒前
狼牧羊城完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
4秒前
pangpang发布了新的文献求助30
4秒前
lxcy0612完成签到,获得积分10
6秒前
HC完成签到,获得积分10
6秒前
谨慎的夏发布了新的文献求助10
7秒前
7秒前
敏感的寒烟应助悟川采纳,获得10
7秒前
8秒前
HITFEI完成签到,获得积分20
8秒前
bkagyin应助duang采纳,获得10
9秒前
陈佩chenpei完成签到,获得积分10
10秒前
晾猫人完成签到,获得积分10
10秒前
李李李完成签到,获得积分10
10秒前
伶俐剑心完成签到,获得积分10
10秒前
蓝调爱科研应助韶似狮采纳,获得10
11秒前
盼夏完成签到 ,获得积分10
11秒前
一只小原发布了新的文献求助10
11秒前
13秒前
隐形的冰海完成签到,获得积分20
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
卡卡西应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助ninicwang采纳,获得10
13秒前
14秒前
小蘑菇应助HITFEI采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
卡卡西应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924