Remote sensing retrieval of aerosol types in China using geostationary satellite

气溶胶 航空网 遥感 地球静止轨道 环境科学 卫星 辐射计 中分辨率成像光谱仪 臭氧监测仪 气象学 地理 工程类 航空航天工程
作者
Xingfeng Chen,Haonan Ding,Jiaguo Li,Lili Wang,Lei Li,Meng Xi,Limin Zhao,Zhicheng Shi,Ziyan Liu
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:299: 107150-107150 被引量:5
标识
DOI:10.1016/j.atmosres.2023.107150
摘要

Aerosol types have crucial and distinguished impacts on climate effects and cause the difference of air pollution. However, direct retrieval of aerosol type by satellite remote sensing is difficult, and the satellite products of aerosol type are seriously lacking. At present, the identification of aerosol type is mainly based on ground-based observation data, but the coverage area of ground-based stations is limited, and large-scale spatial continuous monitoring cannot be carried out. The existing aerosol type identification methods based on satellite data need to combine multiple satellites data (e.g. Moderate-resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), etc.) which leads to a low temporal resolution. The research about aerosol type identification only based on geostationary satellite data is lacking. Therefore, aerosol type identification based on the multi-parameter threshold method and the neural network method are proposed and compared in this paper. The neural network jointly using spectral and temporal information was trained and tested by the measurements from 26 sites of Aerosol Robotic Network (AERONET) and Sun-Sky Radiometer Observation Network (SONET). For the overall validation, the aerosol type identification based on the neural network is better than that based on the multi-parameter threshold method, and the accuracy reaches 71.44%. Atmospheric environment monitoring and quantitative remote sensing can be supported by this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿c3完成签到,获得积分10
刚刚
幽默宛亦发布了新的文献求助10
2秒前
6秒前
7秒前
7秒前
AAA完成签到,获得积分10
8秒前
9秒前
顾矜应助ahu采纳,获得30
11秒前
Cindy发布了新的文献求助30
11秒前
12秒前
13秒前
伍六七完成签到,获得积分10
13秒前
白羽佳发布了新的文献求助30
18秒前
Cindy完成签到,获得积分10
18秒前
从容道罡完成签到,获得积分10
18秒前
poppysss完成签到,获得积分10
19秒前
科研通AI2S应助JiegeSCI采纳,获得10
20秒前
26秒前
俊鱼完成签到,获得积分10
26秒前
JJ完成签到,获得积分10
27秒前
Krim完成签到 ,获得积分10
28秒前
妇产科医生完成签到 ,获得积分10
29秒前
to高坚果发布了新的文献求助10
30秒前
水木年华完成签到,获得积分10
31秒前
WindDreamer完成签到,获得积分10
31秒前
兰天完成签到,获得积分10
31秒前
傲娇的雁菱完成签到,获得积分10
31秒前
阿甘完成签到,获得积分10
32秒前
白羽佳完成签到,获得积分20
34秒前
Ava应助无语的冷风采纳,获得10
36秒前
jiangqin123完成签到 ,获得积分10
36秒前
lilacs完成签到 ,获得积分10
36秒前
5555完成签到,获得积分20
37秒前
史迪奇完成签到,获得积分10
38秒前
40秒前
六沉完成签到 ,获得积分10
44秒前
香蕉觅云应助玉汝于成采纳,获得10
47秒前
月亮在o完成签到 ,获得积分10
47秒前
杏林春暖发布了新的文献求助10
48秒前
49秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409