Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting

计算机科学 利用 人工智能 天气预报 过程(计算) 机器学习 潜变量 构造(python库) 人工神经网络 深度学习 数值天气预报 数据挖掘 气象学 物理 计算机安全 程序设计语言 操作系统
作者
Yongshun Gong,Tiantian He,Meng Chen,Bin Wang,Liqiang Nie,Yilong Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (8): 4260-4274 被引量:5
标识
DOI:10.1109/tkde.2024.3362825
摘要

Weather forecasting is of great importance for human life and various real-world fields, e.g., traffic prediction, agricultural production, and tourist industry. Existing methods can be roughly divided into two categories: theory-driven (e.g., numerical weather prediction (NWP)) and data-driven methods. Theory-driven methods require a complex simulation of the physical evolution process in the atmosphere model using supercomputers, while most data-driven methods learn the underlying laws from the historical weather records via deep learning models. However, some data-driven methods simply regard all weather variables of monitoring stations as a whole and fail to more granularly exploit complex correlations across different stations, while others prefer to construct large neural networks with massive learnable parameters. To alleviate these defects, we propose a spatio-temporal contrastive self-supervision method and a generative contextual self-supervised technique to capture spatial and temporal dependencies from the station-level and variable-level, respectively. Through these well-designed self-supervised tasks, uncomplicated networks obtain strong capability to capture latent representations for weather changes with time-varying. Thereafter, an effective encoder-decoder based fine-tuning framework is proposed, consisting of three self-supervised encoders. Extensive experiments conducted on four real-world weather condition datasets demonstrate that our method outperforms the state-of-the-art models and also empirically validates the feasibility of each self-supervised task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助Vv采纳,获得10
1秒前
小石同学完成签到 ,获得积分10
1秒前
3秒前
科研顺利毕业顺利工作顺利完成签到,获得积分20
3秒前
3秒前
啊薇儿发布了新的文献求助30
4秒前
SYLH应助繁荣的从灵采纳,获得10
4秒前
SYLH应助繁荣的从灵采纳,获得10
4秒前
eternity136发布了新的文献求助10
4秒前
momo完成签到,获得积分20
5秒前
5秒前
老袁发布了新的文献求助10
6秒前
甘草三七完成签到,获得积分10
6秒前
yx626完成签到,获得积分20
7秒前
然然然发布了新的文献求助10
7秒前
wjq发布了新的文献求助10
7秒前
7秒前
Membranes发布了新的文献求助10
8秒前
8秒前
xTATx发布了新的文献求助10
9秒前
9秒前
充电宝应助dasfdufos采纳,获得10
10秒前
CodeCraft应助dasfdufos采纳,获得10
10秒前
科研通AI5应助dasfdufos采纳,获得10
10秒前
Singularity应助dasfdufos采纳,获得10
10秒前
orixero应助dasfdufos采纳,获得10
10秒前
可爱的函函应助dasfdufos采纳,获得10
10秒前
隐形曼青应助dasfdufos采纳,获得10
10秒前
科研通AI5应助杜杜采纳,获得10
10秒前
12秒前
sweet发布了新的文献求助10
13秒前
whole完成签到,获得积分10
13秒前
zoey完成签到,获得积分10
14秒前
自觉的苑博完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599