吸附
微塑料
化学
水溶液
朗缪尔吸附模型
动力学
聚苯乙烯
结晶度
流出物
聚对苯二甲酸乙二醇酯
聚乙烯
化学工程
朗缪尔
核化学
色谱法
环境化学
聚合物
有机化学
材料科学
环境工程
物理
量子力学
工程类
复合材料
结晶学
作者
Mansu Yang,Di Zhang,Wenhai Chu
标识
DOI:10.1016/j.scitotenv.2023.163261
摘要
Microplastics (MPs) widely exist in all kinds of water bodies. The physical and chemical properties of MPs make them easy to become the carrier of pollutants, but the interaction between disinfection by-products (DBPs) and MPs has not been studied yet. In this study, the occurrence of emerging high-toxic chlorophenylacetonitriles (CPANs) in wastewater treatment plant (WWTP) effluents was determined. CPANs ubiquitously existed in WWTP effluents, and the concentration ranged from 88 ± 5 ng/L to 219 ± 16 ng/L. The typical MPs (i.e., polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)) were selected to study their adsorption of CPANs. Adsorption kinetics and isotherm analysis were carried out. The maximum Langmuir adsorption capacities were 8.602 ± 0.849 to 9.833 ± 0.946 μg/g for PE, 13.340 ± 1.055 to 29.405 ± 5.233 μg/g for PET, and 20.537 ± 1.649 to 43.597 ± 1.871 for PS. Dichloro-CPANs had higher adsorption capacity than monochloro-CPANs. After that, the specific surface area, contact angle, FTIR spectrum, crystallinity, and glass transition temperature (Tg) of MPs were measured. Based on the analysis of the properties of both MPs and CPANs, the mechanism of adsorption was studied. The adsorption of CPANs on PE was mainly affected by pore-filling and van der Waals force. In addition to these two factors, the adsorption of PET was also affected by hydrophobic interaction. Due to the substituents on the benzene ring, there was π-π interaction between PS and CPANs, which might be the reason why PS had the highest adsorption capacity for CPANs. Finally, the effects of pH and dissolved organic matter were studied, and their effects were relatively limited. The results indicated that MPs may adsorb CPANs in actual WWTP effluents, and special attention should be paid to the possible impacts on the aquatic environment caused by the transfer of CPANs on MPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI