Optimizing Patient-Specific Medication Regimen Policies Using Wearable Sensors in Parkinson’s Disease

可穿戴计算机 养生 杠杆(统计) 计算机科学 可穿戴技术 医疗保健 强化学习 医学 集合(抽象数据类型) 数据集 物理医学与康复 人工智能 嵌入式系统 内科学 程序设计语言 经济 经济增长
作者
Matt Baucum,Anahita Khojandi,Rama K. Vasudevan,Ritesh Ramdhani
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 5964-5982 被引量:10
标识
DOI:10.1287/mnsc.2023.4747
摘要

Effective treatment of Parkinson’s disease (PD) is a continual challenge for healthcare providers, and providers can benefit from leveraging emerging technologies to supplement traditional clinic care. We develop a data-driven reinforcement learning (RL) framework to optimize PD medication regimens through wearable sensors. We leverage a data set of n = 26 PD patients who wore wrist-mounted movement trackers for two separate six-day periods. Using these data, we first build and validate a simulation model of how individual patients’ movement symptoms respond to medication administration. We then pair this simulation model with an on-policy RL algorithm that recommends optimal medication types, timing, and dosages during the day while incorporating human-in-the-loop considerations on medication administration. The results show that the RL-prescribed medication regimens outperform physicians’ medication regimens, despite physicians having access to the same data as the RL agent. To validate our results, we assess our wearable-based RL medication regimens using n = 399 PD patients from the Parkinson’s Progression Markers Initiative data set. We show that the wearable-based RL medication regimens would lead to significant symptom improvement for these patients, even more so than training RL policies directly from this data set. In doing so, we show that RL models from even small data sets of wearable data can offer novel, generalizable clinical insights and medication strategies, which may outperform those derived from larger data sets without wearable data. This paper was accepted by Carri Chan, healthcare management. Funding: This research is partially supported by the Science Alliance, University of Tennessee and by the Laboratory Directed Research and Development Program, Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy. Data used in this article were obtained from the Parkinson Progression Markers Initiative (PPMI) database, which is sponsored by the Michael J. Fox Foundation for Parkinson’s Research (MJFF). Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4747 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助Mcccccc采纳,获得20
刚刚
冥溟完成签到,获得积分10
1秒前
清脆迎曼应助xww采纳,获得10
1秒前
1秒前
丘比特应助nino采纳,获得10
1秒前
wweq发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
2秒前
渣渣一个发布了新的文献求助10
3秒前
4秒前
7秒前
我是老大应助Heisenberg采纳,获得10
7秒前
8秒前
acarbose发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
幸运星完成签到,获得积分10
8秒前
simple发布了新的文献求助10
8秒前
科研通AI6应助大气的妙旋采纳,获得10
9秒前
9秒前
哈赤完成签到 ,获得积分10
9秒前
浮游应助yoyo112233采纳,获得10
11秒前
初见发布了新的文献求助10
11秒前
怕黑的凡灵完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
15秒前
15秒前
lu发布了新的文献求助10
16秒前
潘道佑发布了新的文献求助10
16秒前
浮游应助刻苦惜霜采纳,获得10
17秒前
simple完成签到,获得积分20
19秒前
科研通AI6应助Comet采纳,获得10
19秒前
Owen应助初见采纳,获得10
20秒前
想看雪的人完成签到,获得积分10
20秒前
21秒前
21秒前
nino发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351