Mining Highly Active Oleate Hydratases by Structure Clustering, Sequence Clustering, and Ancestral Sequence Reconstruction

聚类分析 序列(生物学) 活动站点 计算生物学 肽序列 突变 生物 计算机科学 生物化学 人工智能 突变体 基因
作者
X. Che,Xueying Tao,Jianan Chen,Yanbin Feng,Ziheng Cui,Ting Feng,Yunming Fang,Han Wen,Song Xue
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:73 (12): 7335-7346 被引量:3
标识
DOI:10.1021/acs.jafc.4c10815
摘要

Oleate hydratases (Ohys) catalyze the conversion of oleic acid (OA) to 10-(R)-hydroxystearic acid (10-HSA), a compound widely used in the chemical industry. However, the limited activity of Ohys has hindered their broader applications. To address this limitation, we propose a novel strategy for mining highly active Ohys through structure clustering, sequence clustering, and ancestral sequence reconstruction (SSA strategy). Structure clustering via AI-driven protein structure prediction followed by classification enhanced the ability to mine target Ohys. Ancestral enzyme reconstruction was carried out based on mining results from both structure and sequence clustering. This strategy significantly reduces the time and cost of the discovery process. Among the 1304 Ohys screened via SSA, 13 candidates were selected. Seven candidates demonstrated high activity. Ohy 64, identified through structure clustering, exhibited the highest activity. Ancestral enzymes that were reconstructed from structure clustering targets were 3 times more likely to exhibit high catalytic activity than those identified through sequence clustering. Four critical, hydrophobic residues were identified through structure and sequence comparisons between StOhy and targets mined by SSA. Site-directed mutagenesis revealed that these hydrophobic residues conferred varying levels of enzyme activity, confirming that increased hydrophobicity at these positions enhances cofactor FAD binding, thus improving enzyme catalytic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nxdr完成签到,获得积分10
刚刚
刚刚
1秒前
省静霞完成签到,获得积分10
1秒前
小蘑菇应助滴啦塔采纳,获得10
2秒前
852应助米兰无敌采纳,获得10
3秒前
yang发布了新的文献求助10
4秒前
共享精神应助余晓雨采纳,获得10
4秒前
clock完成签到 ,获得积分10
5秒前
今后应助123采纳,获得10
9秒前
10秒前
10秒前
永远永远完成签到,获得积分10
10秒前
Belinda完成签到 ,获得积分10
11秒前
canghong完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
buuyoo完成签到 ,获得积分10
14秒前
漫漫发布了新的文献求助10
14秒前
乐乐应助石东明采纳,获得10
14秒前
15秒前
16秒前
可爱豆芽完成签到,获得积分20
16秒前
17秒前
yizhi猫发布了新的文献求助10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得30
18秒前
18秒前
Hello应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172