Mining Highly Active Oleate Hydratases by Structure Clustering, Sequence Clustering, and Ancestral Sequence Reconstruction

聚类分析 序列(生物学) 活动站点 计算生物学 肽序列 突变 生物 计算机科学 生物化学 人工智能 突变体 基因
作者
X. Che,Xueying Tao,Jianan Chen,Yanbin Feng,Ziheng Cui,Ting Feng,Yunming Fang,Han Wen,Song Xue
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jafc.4c10815
摘要

Oleate hydratases (Ohys) catalyze the conversion of oleic acid (OA) to 10-(R)-hydroxystearic acid (10-HSA), a compound widely used in the chemical industry. However, the limited activity of Ohys has hindered their broader applications. To address this limitation, we propose a novel strategy for mining highly active Ohys through structure clustering, sequence clustering, and ancestral sequence reconstruction (SSA strategy). Structure clustering via AI-driven protein structure prediction followed by classification enhanced the ability to mine target Ohys. Ancestral enzyme reconstruction was carried out based on mining results from both structure and sequence clustering. This strategy significantly reduces the time and cost of the discovery process. Among the 1304 Ohys screened via SSA, 13 candidates were selected. Seven candidates demonstrated high activity. Ohy 64, identified through structure clustering, exhibited the highest activity. Ancestral enzymes that were reconstructed from structure clustering targets were 3 times more likely to exhibit high catalytic activity than those identified through sequence clustering. Four critical, hydrophobic residues were identified through structure and sequence comparisons between StOhy and targets mined by SSA. Site-directed mutagenesis revealed that these hydrophobic residues conferred varying levels of enzyme activity, confirming that increased hydrophobicity at these positions enhances cofactor FAD binding, thus improving enzyme catalytic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴发布了新的文献求助10
刚刚
斯文明杰发布了新的文献求助10
1秒前
田様应助shadow采纳,获得10
2秒前
2秒前
4秒前
吉克完成签到,获得积分10
4秒前
李星星发布了新的文献求助10
4秒前
kangkang完成签到,获得积分20
4秒前
无定发布了新的文献求助10
4秒前
Akim应助王振强采纳,获得10
6秒前
喜多喜多完成签到,获得积分10
6秒前
清风与你2发布了新的文献求助10
6秒前
咚咚完成签到,获得积分10
7秒前
脑洞疼应助ws采纳,获得10
7秒前
8秒前
嘿嘿完成签到,获得积分20
8秒前
研友_VZG7GZ应助陈道哥采纳,获得10
8秒前
orixero应助hayden采纳,获得10
9秒前
syj完成签到,获得积分10
9秒前
9秒前
康康发布了新的文献求助10
10秒前
小豆包完成签到,获得积分10
10秒前
sff完成签到,获得积分10
10秒前
想法文章的医学僧完成签到,获得积分10
11秒前
13秒前
NexusExplorer应助斯文明杰采纳,获得10
13秒前
李星星完成签到,获得积分10
15秒前
jojo完成签到,获得积分10
15秒前
深情安青应助linn采纳,获得10
15秒前
ssss完成签到,获得积分10
16秒前
外向的从彤完成签到,获得积分10
16秒前
温婉的从寒完成签到,获得积分10
16秒前
落雨完成签到,获得积分10
18秒前
tianxie发布了新的文献求助30
18秒前
美羊羊完成签到,获得积分10
20秒前
雪山飞龙发布了新的文献求助10
20秒前
斯文败类应助Zcccjy采纳,获得30
21秒前
英俊的铭应助阿峤采纳,获得10
21秒前
22秒前
alex完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055