SSC-SleepNet: A Siamese-Based Automatic Sleep Staging Model with Improved N1 Sleep Detection

睡眠(系统调用) 计算机科学 医学 人工智能 操作系统
作者
Songlu Lin,Zhihong Wang,Hans van Gorp,Mengzhu Xu,Merel M. van Gilst,Sebastiaan Overeem,Jean‐Paul M. G. Linnartz,Pedro Fonseca,Xi Long
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jbhi.2025.3572886
摘要

Automatic sleep staging from single-channel electroencephalography (EEG) using artificial intelligence (AI) is emerging as an alternative to costly and time-consuming manual scoring using multi-channel polysomnography. However, current AI methods, mainly deep learning models such as convolutional neural network (CNN) and long short-term memory (LSTM), struggle to detect the N1 sleep stage, which is challenging due to its rarity and ambiguous nature compared to other stages. Here we propose SSC-SleepNet, an automatic sleep staging algorithm aimed at improving the learning of N1 sleep. SSC-SleepNet employs a pseudo-Siamese neural network architecture owing to its capability in one- or few-shot learning with contrastive loss. Which we selected due to its strong capability in one- or few-shot learning with a contrastive loss function. SSC-SleepNet consists of two branches of neural networks: a squeeze-and-excitation residual network branch and a CNN-LSTM branch. These two branches are used to generate latent features of the EEG epoch. The adaptive loss function of SSC-SleepNet uses a weighing factor to combine weighted cross-entropy loss and focal loss to specifically address the class imbalance issue inherent in sleep staging. The proposed new loss function dynamically assigns a higher penalty to misclassified N1 sleep stages, which can improve the model's learning capability for this minority class. Four datasets were used for sleep staging experiments. In the Sleep-EDF-SC, Sleep-EDF-X, Sleep Heart Health Study, and Haaglanden Medisch Centrum datasets, SSC-SleepNet achieved macro F1-scores of 84.5%, 89.6%, 89.5%, and 85.4% for all sleep stages, and N1 sleep stage F1-scores of 60.2%, 58.3%, 57.8%, and 55.2%, respectively. Our proposed deep learning model outperformed the most existing models in automatic sleep staging using single-channel EEG signals. In particular, N1 detection performance has been markedly improved compared to the state-of-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渊澈发布了新的文献求助10
1秒前
2秒前
Swear完成签到 ,获得积分10
3秒前
4秒前
研友_VZG7GZ应助July采纳,获得10
6秒前
碗碗发布了新的文献求助10
6秒前
6秒前
大模型应助千殇采纳,获得10
6秒前
7秒前
7秒前
李傲完成签到,获得积分10
9秒前
小鑫发布了新的文献求助10
9秒前
Always发布了新的文献求助10
9秒前
JT发布了新的文献求助10
11秒前
la完成签到,获得积分10
11秒前
正直尔曼完成签到,获得积分10
13秒前
yh145发布了新的文献求助10
13秒前
狐狸小姐完成签到,获得积分10
16秒前
陶醉如柏完成签到,获得积分10
16秒前
wanci应助碗碗采纳,获得10
16秒前
16秒前
顾矜应助Daemon采纳,获得30
17秒前
21秒前
科研通AI5应助大龙哥886采纳,获得30
21秒前
无花果应助小鑫采纳,获得10
22秒前
渊澈完成签到,获得积分10
23秒前
23秒前
24秒前
整齐谷芹完成签到,获得积分10
24秒前
cici发布了新的文献求助10
26秒前
李洪卓发布了新的文献求助10
26秒前
JamesPei应助危机的友绿采纳,获得10
27秒前
28秒前
28秒前
千殇发布了新的文献求助10
29秒前
31秒前
CUN发布了新的文献求助20
31秒前
英俊的铭应助cici采纳,获得10
32秒前
李健应助危机的友绿采纳,获得10
33秒前
shidandan完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4803299
求助须知:如何正确求助?哪些是违规求助? 4120528
关于积分的说明 12748699
捐赠科研通 3853047
什么是DOI,文献DOI怎么找? 2122061
邀请新用户注册赠送积分活动 1144129
关于科研通互助平台的介绍 1034892