睡眠(系统调用)
计算机科学
医学
人工智能
操作系统
作者
Songlu Lin,Zhihong Wang,Hans van Gorp,Mengzhu Xu,Merel M. van Gilst,Sebastiaan Overeem,Jean‐Paul M. G. Linnartz,Pedro Fonseca,Xi Long
标识
DOI:10.1109/jbhi.2025.3572886
摘要
Automatic sleep staging from single-channel electroencephalography (EEG) using artificial intelligence (AI) is emerging as an alternative to costly and time-consuming manual scoring using multi-channel polysomnography. However, current AI methods, mainly deep learning models such as convolutional neural network (CNN) and long short-term memory (LSTM), struggle to detect the N1 sleep stage, which is challenging due to its rarity and ambiguous nature compared to other stages. Here we propose SSC-SleepNet, an automatic sleep staging algorithm aimed at improving the learning of N1 sleep. SSC-SleepNet employs a pseudo-Siamese neural network architecture owing to its capability in one- or few-shot learning with contrastive loss. Which we selected due to its strong capability in one- or few-shot learning with a contrastive loss function. SSC-SleepNet consists of two branches of neural networks: a squeeze-and-excitation residual network branch and a CNN-LSTM branch. These two branches are used to generate latent features of the EEG epoch. The adaptive loss function of SSC-SleepNet uses a weighing factor to combine weighted cross-entropy loss and focal loss to specifically address the class imbalance issue inherent in sleep staging. The proposed new loss function dynamically assigns a higher penalty to misclassified N1 sleep stages, which can improve the model's learning capability for this minority class. Four datasets were used for sleep staging experiments. In the Sleep-EDF-SC, Sleep-EDF-X, Sleep Heart Health Study, and Haaglanden Medisch Centrum datasets, SSC-SleepNet achieved macro F1-scores of 84.5%, 89.6%, 89.5%, and 85.4% for all sleep stages, and N1 sleep stage F1-scores of 60.2%, 58.3%, 57.8%, and 55.2%, respectively. Our proposed deep learning model outperformed the most existing models in automatic sleep staging using single-channel EEG signals. In particular, N1 detection performance has been markedly improved compared to the state-of-art models.
科研通智能强力驱动
Strongly Powered by AbleSci AI