已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction and Application of Traffic Accident Knowledge Graph Based on LLM

计算机科学 知识图 图形 图论 运输工程 人工智能 理论计算机科学 工程类 数学 组合数学
作者
Yunfei Hou,Yichang Shao,Zhongyi Han,Zhirui Ye
出处
期刊:SAE technical paper series 卷期号:1 被引量:1
标识
DOI:10.4271/2025-01-7139
摘要

<div class="section abstract"><div class="htmlview paragraph">Records of traffic accidents contain a wealth of information regarding accident causes and consequences. It provides a valuable data foundation for accident analysis. The diversity and complexity of textual data pose significant challenges in knowledge extracting. Previous research primarily relies on Natural Language Processing (NLP) to extract knowledge from texts and uses knowledge graphs (KGs) to store information in a structured way. However, the process based on NLP typically necessitates extensive annotated datasets for model training, which is complex and time-consuming. Moreover, the application of traffic accident knowledge graphs by direct information querying within the graph requiring complex commands, which leads to poor interaction capabilities. In this study, we adapt an innovative approach integrates Large Language Models (LLMs) for the construction and application of a traffic accident knowledge graph. Based on the defined schema layer of the traffic accident knowledge graph, we employ LLMs to extract knowledge from accident records and refine the extraction process by using prompts and few-shot learning mechanism. To ensure the accuracy of the extracted result, we employ a dual verification method combines self-verification of LLMs with manual inspection. Then we visualize the knowledge by using Neo4j. Finally, we explore the application of KGs within the framework of Retrieval-Augmented Generation (RAG) and construct an intelligent question-answering system. The combination of LLMs and KGs facilitates a framework of semi-automated knowledge extraction and analysis. The Knowledge Graph-Based Retrieval-Augmented Generation Question Answering System for Traffic Accidents enables complex query and answering tasks such as causation analysis and scenario generation for autonomous driving tests. The integration of KGs and LLMs not only expands the application scenarios of KGs but also reduces the risk of hallucination in responses generated by LLMs. This method efficiently Extracting information from unstructured textual data, advances the digitalization and intelligence of traffic accident management.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiw完成签到,获得积分10
1秒前
yzbbb发布了新的文献求助10
2秒前
爱科研的小凡完成签到,获得积分10
2秒前
小盼虫发布了新的文献求助10
2秒前
开放灭绝完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
研友_VZG7GZ应助多边棱采纳,获得10
7秒前
开放灭绝发布了新的文献求助10
8秒前
8秒前
坚强的纸飞机完成签到,获得积分10
10秒前
10秒前
nykal发布了新的文献求助10
12秒前
Akim应助besatified采纳,获得10
13秒前
科目三应助yukky采纳,获得10
15秒前
19秒前
27秒前
wanci应助11采纳,获得10
28秒前
hannah发布了新的文献求助30
29秒前
Roy007完成签到,获得积分10
32秒前
归尘发布了新的文献求助10
32秒前
刘可涛发布了新的文献求助10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
后陡门爱神完成签到 ,获得积分10
33秒前
xiongyh10完成签到,获得积分10
37秒前
hannah完成签到,获得积分10
37秒前
贪玩的谷芹完成签到 ,获得积分10
37秒前
42秒前
共享精神应助冷傲的访云采纳,获得10
43秒前
mumu完成签到,获得积分10
44秒前
44秒前
花花发布了新的文献求助10
48秒前
50秒前
53秒前
YW发布了新的文献求助10
55秒前
58秒前
汤泽琪发布了新的文献求助10
58秒前
贱小贱完成签到,获得积分0
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4652390
求助须知:如何正确求助?哪些是违规求助? 4039362
关于积分的说明 12493661
捐赠科研通 3729722
什么是DOI,文献DOI怎么找? 2058765
邀请新用户注册赠送积分活动 1089473
科研通“疑难数据库(出版商)”最低求助积分说明 970532