Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review

计算机科学 人工智能 深度学习 计算机视觉 图像分辨率
作者
Karansingh Chauhan,Shail Nimish Patel,Malaram Kumhar,Jitendra Bhatia,Sudeep Tanwar,Innocent E. Davidson,Thokozile Mazibuko,Ravi Sharma
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 21811-21830 被引量:31
标识
DOI:10.1109/access.2023.3251396
摘要

High-fidelity information, such as 4K quality videos and photographs, is increasing as high-speed internet access becomes more widespread and less expensive. Even though camera sensors' performance is constantly improving, artificially enhanced photos and videos created by intelligent image processing algorithms have significantly improved image fidelity in recent years. Single image super-resolution is a class of algorithms that produces a high-resolution image from a given low-resolution image. Since the advent of deep learning a decade ago, this field has made significant strides. This paper presents a comprehensive review of the deep learning assisted single image super-resolution domain including generative adversarial network (GAN) models that discusses the prominent architectures, models used, and their merits and demerits. The reason behind covering the GAN models is that it is been known to perform better than the conventional deep learning methods given the resources and the time. For real-world applications with noise and other issues that can cause low-fidelity super resolution (SR) images, we examine another solution based on GAN model. This GAN model-based technique popularly known as blind super resolution is more resilient. We examined the various super-resolution techniques by varying image scaling factors (i.e., 2x, 3x, 4x) to measure PSNR and SSIM metrics for the different datasets. PSNR across the different datasets covered in the experimental section shows an average of 14-17 % decrease in the score as we move up the image resolution scale from 2x to 4x. This is observed across all the datasets and for every model mentioned in the experimental section of the paper. The results also show that blind super-resolution outperforms the conventional deep learning methods and the more complex GAN models. GAN models are complex and preferred when the upscale factor is high, while residual and dense models are recommended for smaller upscaling factors. This paper also discusses the applications of image super-resolution, and finally, the paper is concluded with challenges and future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xrhk发布了新的文献求助10
刚刚
种桃老总发布了新的文献求助10
1秒前
carl发布了新的文献求助10
3秒前
科研通AI5应助carl采纳,获得10
10秒前
kfbcj完成签到 ,获得积分10
13秒前
15秒前
pluto应助缺粥采纳,获得10
15秒前
所所应助跪求采纳,获得10
18秒前
Ava应助优秀藏鸟采纳,获得10
19秒前
一二发布了新的文献求助10
20秒前
JamesPei应助偷乐采纳,获得10
24秒前
26秒前
26秒前
29秒前
yunga发布了新的文献求助10
31秒前
32秒前
Firstoronre发布了新的文献求助10
32秒前
33秒前
香蕉寒梅发布了新的文献求助10
33秒前
35秒前
pluto应助缺粥采纳,获得10
35秒前
跪求发布了新的文献求助10
36秒前
37秒前
39秒前
jackycas发布了新的文献求助10
40秒前
春江完成签到,获得积分10
40秒前
Owen应助Cuz采纳,获得10
40秒前
45秒前
46秒前
48秒前
甜蜜的灵凡完成签到,获得积分10
49秒前
pluto应助ke采纳,获得20
50秒前
kfbcj发布了新的文献求助30
52秒前
大模型应助Rh采纳,获得10
52秒前
欣喜柚子完成签到 ,获得积分10
53秒前
++完成签到 ,获得积分10
55秒前
wlj完成签到 ,获得积分10
56秒前
小姚姚完成签到,获得积分10
58秒前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549