Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments

身份(音乐) 分子动力学 曲面(拓扑) 化学物理 纳米技术 计算机科学 统计物理学 人工智能 生物系统 材料科学 物理 化学 计算化学 数学 几何学 生物 声学
作者
Matteo Cioni,Daniela Polino,Daniele Rapetti,Luca Pesce,Massimo Delle Piane,Giovanni M. Pavan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (12): 124701-124701 被引量:22
标识
DOI:10.1063/5.0139010
摘要

Metals are traditionally considered hard matter. However, it is well known that their atomic lattices may become dynamic and undergo reconfigurations even well below the melting temperature. The innate atomic dynamics of metals is directly related to their bulk and surface properties. Understanding their complex structural dynamics is, thus, important for many applications but is not easy. Here, we report deep-potential molecular dynamics simulations allowing to resolve at an atomic resolution the complex dynamics of various types of copper (Cu) surfaces, used as an example, near the Hüttig (∼1/3 of melting) temperature. The development of deep neural network potential trained on density functional theory calculations provides a dynamically accurate force field that we use to simulate large atomistic models of different Cu surface types. A combination of high-dimensional structural descriptors and unsupervized machine learning allows identifying and tracking all the atomic environments (AEs) emerging in the surfaces at finite temperatures. We can directly observe how AEs that are non-native in a specific (ideal) surface, but that are, instead, typical of other surface types, continuously emerge/disappear in that surface in relevant regimes in dynamic equilibrium with the native ones. Our analyses allow estimating the lifetime of all the AEs populating these Cu surfaces and to reconstruct their dynamic interconversions networks. This reveals the elusive identity of these metal surfaces, which preserve their identity only in part and in part transform into something else under relevant conditions. This also proposes a concept of “statistical identity” for metal surfaces, which is key to understanding their behaviors and properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水星完成签到 ,获得积分0
刚刚
可取完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
我是老大应助含糊的电源采纳,获得10
2秒前
yy完成签到 ,获得积分10
2秒前
蓝翔高材生完成签到 ,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助平常的铅笔采纳,获得10
3秒前
woshiyy完成签到 ,获得积分10
4秒前
hbj完成签到,获得积分10
4秒前
AILIXIERAILI完成签到,获得积分10
5秒前
6秒前
momo完成签到,获得积分10
8秒前
xtz完成签到 ,获得积分10
9秒前
xiao xu完成签到 ,获得积分10
9秒前
Jehuw完成签到,获得积分10
9秒前
9秒前
nnnnn完成签到,获得积分10
11秒前
春天的粥完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
俊秀的思山完成签到,获得积分10
12秒前
13秒前
常常完成签到,获得积分10
13秒前
xiaofenzi完成签到,获得积分10
14秒前
化工牛马发布了新的文献求助10
14秒前
猕猴桃完成签到 ,获得积分10
15秒前
方圆完成签到 ,获得积分10
15秒前
洋123完成签到 ,获得积分10
15秒前
小米完成签到,获得积分10
17秒前
bubuyier完成签到 ,获得积分10
17秒前
古鲁蒂完成签到,获得积分10
17秒前
愤怒的苗条完成签到 ,获得积分10
17秒前
甜蜜冷风完成签到,获得积分10
17秒前
十七完成签到 ,获得积分10
18秒前
guozizi发布了新的文献求助30
18秒前
不想看文献完成签到 ,获得积分10
21秒前
fyy完成签到 ,获得积分10
21秒前
健忘丹珍完成签到,获得积分10
22秒前
zzhui完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510147
求助须知:如何正确求助?哪些是违规求助? 4604792
关于积分的说明 14490231
捐赠科研通 4539813
什么是DOI,文献DOI怎么找? 2487706
邀请新用户注册赠送积分活动 1469989
关于科研通互助平台的介绍 1442453