Discovering small-molecule senolytics with deep neural networks

人工神经网络 深层神经网络 计算机科学 人工智能
作者
Felix Wong,Satotaka Omori,Nina M. Donghia,Erica J. Zheng,James J. Collins
出处
期刊:Nature Aging 卷期号:3 (6): 734-750 被引量:51
标识
DOI:10.1038/s43587-023-00415-z
摘要

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics. Senolytic compounds have shown promise for the treatment of aging-related diseases in animal models. Here, to discover new small molecule senolytics, Wong, Omori and colleagues introduce a graph neural network platform, identify structurally diverse compounds with favorable drug-like properties and confirm one compound's in vivo activity in aged mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Future发布了新的文献求助10
刚刚
科研通AI6应助chsdpolos采纳,获得10
刚刚
1秒前
1秒前
stacy发布了新的文献求助10
2秒前
科目三应助顺心的芝麻采纳,获得10
2秒前
3秒前
Mycee发布了新的文献求助50
3秒前
科研通AI6应助汪文卿采纳,获得10
4秒前
西瓜666发布了新的文献求助10
5秒前
6秒前
Jasper应助zq采纳,获得10
6秒前
6秒前
柔弱亦寒发布了新的文献求助10
7秒前
俞璐发布了新的文献求助10
7秒前
wu完成签到,获得积分10
7秒前
7秒前
7秒前
许孤风完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
nico完成签到,获得积分10
9秒前
9秒前
17720485712完成签到 ,获得积分10
9秒前
10秒前
jssssssss发布了新的文献求助10
11秒前
ZJH发布了新的文献求助10
11秒前
干净绮烟发布了新的文献求助10
12秒前
wu发布了新的文献求助10
13秒前
13秒前
hades完成签到 ,获得积分10
13秒前
仁爱听露发布了新的文献求助10
14秒前
刘钱美子发布了新的文献求助10
15秒前
搜集达人应助liuxinyu采纳,获得10
15秒前
南风发布了新的文献求助10
16秒前
科研通AI6应助俞璐采纳,获得30
16秒前
17秒前
18秒前
zq发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285092
求助须知:如何正确求助?哪些是违规求助? 3812537
关于积分的说明 11942455
捐赠科研通 3458948
什么是DOI,文献DOI怎么找? 1897089
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849400