亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovering small-molecule senolytics with deep neural networks

人工神经网络 深层神经网络 计算机科学 人工智能
作者
Felix Wong,Satotaka Omori,Nina M. Donghia,Erica J. Zheng,James J. Collins
出处
期刊:Nature Aging 卷期号:3 (6): 734-750 被引量:61
标识
DOI:10.1038/s43587-023-00415-z
摘要

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics. Senolytic compounds have shown promise for the treatment of aging-related diseases in animal models. Here, to discover new small molecule senolytics, Wong, Omori and colleagues introduce a graph neural network platform, identify structurally diverse compounds with favorable drug-like properties and confirm one compound's in vivo activity in aged mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆你个西红柿完成签到 ,获得积分10
7秒前
深情安青应助Developing_human采纳,获得10
13秒前
英俊的铭应助JoeC采纳,获得10
23秒前
汉堡包应助悠悠采纳,获得10
26秒前
BowieHuang应助VDC采纳,获得10
39秒前
赘婿应助刘卓采纳,获得10
51秒前
53秒前
悠悠发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
wk123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
wk123完成签到,获得积分20
1分钟前
刘卓发布了新的文献求助10
1分钟前
调皮的代双完成签到 ,获得积分10
1分钟前
JoeC发布了新的文献求助10
1分钟前
JoeC完成签到,获得积分10
1分钟前
moiaoh发布了新的文献求助30
1分钟前
万能图书馆应助研友_ZGRqKn采纳,获得10
1分钟前
悠悠完成签到,获得积分20
2分钟前
华仔应助积极的初南采纳,获得10
2分钟前
2分钟前
BowieHuang应助VDC采纳,获得10
2分钟前
2分钟前
所所应助晨蹦蹦采纳,获得10
2分钟前
moiaoh发布了新的文献求助100
2分钟前
2分钟前
Vivian薇薇安完成签到,获得积分10
2分钟前
乐乐应助Vivian薇薇安采纳,获得10
2分钟前
2分钟前
MchemG完成签到,获得积分0
2分钟前
VDC完成签到,获得积分0
2分钟前
Akim应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765419
关于积分的说明 15025593
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567965
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004