已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discovering small-molecule senolytics with deep neural networks

人工神经网络 深层神经网络 计算机科学 人工智能
作者
Felix Wong,Satotaka Omori,Nina M. Donghia,Erica J. Zheng,James J. Collins
出处
期刊:Nature Aging 卷期号:3 (6): 734-750 被引量:60
标识
DOI:10.1038/s43587-023-00415-z
摘要

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics. Senolytic compounds have shown promise for the treatment of aging-related diseases in animal models. Here, to discover new small molecule senolytics, Wong, Omori and colleagues introduce a graph neural network platform, identify structurally diverse compounds with favorable drug-like properties and confirm one compound's in vivo activity in aged mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶花白玫瑰完成签到 ,获得积分10
1秒前
2秒前
3秒前
7秒前
Curtley发布了新的文献求助10
8秒前
好数据发布了新的文献求助10
8秒前
解惑大师完成签到 ,获得积分10
12秒前
英姑应助Guoys采纳,获得10
14秒前
GingerF应助成就觅海采纳,获得50
15秒前
浮游应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
19秒前
20秒前
怡然的姒完成签到,获得积分10
21秒前
24秒前
lt完成签到 ,获得积分10
27秒前
27秒前
29秒前
31秒前
YaoQi发布了新的文献求助10
32秒前
初眠完成签到,获得积分10
33秒前
37秒前
邵邵发布了新的文献求助10
38秒前
44秒前
nxy完成签到 ,获得积分10
44秒前
47秒前
bkagyin应助嘟嘟哒采纳,获得10
48秒前
49秒前
mo完成签到 ,获得积分10
49秒前
小刘发布了新的文献求助10
50秒前
风趣的梦露完成签到 ,获得积分10
50秒前
zeice完成签到 ,获得积分10
54秒前
魏欣娜完成签到 ,获得积分10
54秒前
好久不见完成签到 ,获得积分10
54秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
The Grammar of Interaction Epistemicity, information management and discourse in language use 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5115607
求助须知:如何正确求助?哪些是违规求助? 4322568
关于积分的说明 13469017
捐赠科研通 4154616
什么是DOI,文献DOI怎么找? 2276572
邀请新用户注册赠送积分活动 1278479
关于科研通互助平台的介绍 1216418