Machine learning algorithm based on jaw feature points assist complex maxillary and mandibular reconstruction

特征(语言学) 计算机科学 算法 人工智能 比例(比率) 点(几何) 口腔正畸科 数学 医学 几何学 哲学 语言学 物理 量子力学
作者
Jing Han,Zijia Liu,Zijie Zhou,Yige Liu,Guangtao Zhai,Jiannan Liu
出处
期刊:Journal of Stomatology, Oral and Maxillofacial Surgery [Elsevier BV]
卷期号:124 (1): 101343-101343
标识
DOI:10.1016/j.jormas.2022.11.019
摘要

Large-scale jaw reconstruction can hardly achieve satisfactory results only by relying on doctors' experience. In this study, we assessed a new approach using a machine learning algorithm based on jaw feature points to assist complex jaw reconstruction in patients with maxillary and mandibular defects.One hundred and two computed tomography (CT) data on the jaw were collected and 16 skeletal marker points on the jaw were selected. The machine learning algorithm learned the positional relationship between points and built a model, which was used to predict the coordinate position of an unknown point. Then the model was used for a surgical plan in clinical cases.The linear regression model based on machine learning can control the error within 3 mm. In linear models, Lasso has a slight advantage over the others. We used Lasso to predict the missing points for two patients with maxillary and mandibular defect, respectively. The operation was carried out as planned, and the defects were successfully repaired.The restoration of jaw feature points based on a machine learning algorithm is expected to solve large-scale jaw defects without contralateral reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GRG完成签到 ,获得积分10
1秒前
天天呼的海角完成签到,获得积分10
1秒前
相宜完成签到 ,获得积分20
2秒前
3秒前
科研通AI5应助绿端采纳,获得10
5秒前
小施发布了新的文献求助10
5秒前
7秒前
小二郎应助xiaohai采纳,获得10
8秒前
LeBron完成签到,获得积分10
10秒前
10秒前
10秒前
Orange应助lxlcx采纳,获得10
10秒前
大个应助妩媚的强炫采纳,获得10
10秒前
HSA完成签到,获得积分10
11秒前
Dr_guo完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
14秒前
luoqin发布了新的文献求助10
15秒前
所所应助Hhh采纳,获得10
15秒前
16秒前
钟山发布了新的文献求助10
19秒前
二猫完成签到,获得积分10
19秒前
20秒前
20秒前
稳重小刺猬完成签到,获得积分10
20秒前
小楠楠发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
郭同学关注了科研通微信公众号
23秒前
大模型应助小施采纳,获得10
24秒前
gyf完成签到,获得积分10
24秒前
25秒前
xiaohai发布了新的文献求助10
26秒前
27秒前
27秒前
Hhh发布了新的文献求助10
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825630
求助须知:如何正确求助?哪些是违规求助? 3367812
关于积分的说明 10447822
捐赠科研通 3087227
什么是DOI,文献DOI怎么找? 1698538
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973