Neural Architecture Search via Proxy Validation

计算机科学 人工神经网络 估计员 人工智能 建筑 网络体系结构 机器学习 数据挖掘 统计 数学 艺术 计算机安全 视觉艺术
作者
Yanxi Li,Minjing Dong,Yunhe Wang,Chang Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 7595-7610 被引量:6
标识
DOI:10.1109/tpami.2022.3217648
摘要

This paper searches for the optimal neural architecture by minimizing a proxy of validation loss. Existing neural architecture search (NAS) methods used to discover the optimal neural architecture that best fits the validation examples given the up-to-date network weights. These intermediate validation results are invaluable but have not been fully explored. We propose to approximate the validation loss landscape by learning a mapping from neural architectures to their corresponding validate losses. The optimal neural architecture thus can be easily identified as the minimum of this proxy validation loss landscape. To improve the efficiency, a novel architecture sampling strategy is developed for the approximation of the proxy validation loss landscape. We also propose an operation importance weight (OIW) to balance the randomness and certainty of architecture sampling. The representation of neural architecture is learned through a graph autoencoder (GAE) over both architectures sampled during search and randomly generated architectures. We provide theoretical analyses on the validation loss estimator learned with our sampling strategy. Experimental results demonstrate that the proposed proxy validation loss landscape can be effective in both the differentiable NAS and the evolutionary-algorithm-based (EA-based) NAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
peteichor关注了科研通微信公众号
刚刚
刚刚
刚刚
家若完成签到 ,获得积分10
刚刚
徐旖旎完成签到,获得积分10
1秒前
Ava应助帅关采纳,获得10
1秒前
深情安青应助lin采纳,获得10
1秒前
1秒前
过时的热狗完成签到,获得积分10
1秒前
搜集达人应助难搞哦采纳,获得10
2秒前
大模型应助7九采纳,获得10
3秒前
国服懒羊羊完成签到,获得积分10
3秒前
Mchong发布了新的文献求助10
3秒前
雷小牛完成签到 ,获得积分10
3秒前
小马哥发布了新的文献求助30
4秒前
zzzzz发布了新的文献求助10
4秒前
4秒前
4秒前
liwenqiang发布了新的文献求助10
4秒前
华仔应助ju龙哥采纳,获得10
5秒前
ZKang发布了新的文献求助10
5秒前
可爱的函函应助cimy采纳,获得10
5秒前
英姑应助小西瓜采纳,获得10
5秒前
masterwill发布了新的文献求助10
5秒前
5秒前
张zzz完成签到,获得积分10
6秒前
脑洞疼应助清爽远航采纳,获得10
6秒前
Grey发布了新的文献求助30
6秒前
负责的紫安完成签到 ,获得积分10
6秒前
6秒前
鳗鱼盼夏完成签到,获得积分10
6秒前
小熊猫完成签到,获得积分10
7秒前
xiewuhua发布了新的文献求助10
7秒前
霸气的芷天完成签到 ,获得积分10
7秒前
xzy998完成签到,获得积分0
8秒前
小北完成签到,获得积分10
8秒前
野鸽儿完成签到 ,获得积分10
8秒前
8秒前
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561