Combining Retip Retention Time Prediction with High-Resolution Mass Spectrometry: A Systematic Analysis of Schisandra chinensis - Evodia Conducted for the First Time

作者
Jiaqi Xu,Lincheng Bai,Tiantian Wang,Zhengyi Yi,Hua Han,Peiliang Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (50): 27988-27998
标识
DOI:10.1021/acs.analchem.5c05620
摘要

Schisandra chinensis-Evodia Herbal Pair (SEHP) is one of the classic Chinese herbal formulas for treating Alzheimer's disease (AD), but its complex chemical composition renders traditional analytical methods inefficient. Retention time (RT) provides complementary information to mass spectrometry, supporting qualitative identification. To enhance identification accuracy and efficiency, this study pioneered the integration of Retip retention time prediction with five machine learning models (Random Forest, BRNN, XGBoost, LightGBM, and Keras) for the systematic identification of SEHP chemical constituents. Using UPLC-Q-Exactive Orbitrap MS technology combined with MS-DIAL and Compound Discoverer software, 165 compounds were identified, including alkaloids, organic acids, and lignans. The LightGBM model achieved high-precision RT prediction within a ±1 min tolerance, significantly reducing false positive identification rates. Through in vivo experiments, 56 parent compounds and 281 metabolites were identified in plasma, urine, feces, liver, and brain tissues of 3xTg-AD mice, revealing their Phase I and II metabolic characteristics. Network pharmacology and molecular docking analysis suggested that SEHP may exert anti-AD effects by regulating key targets such as TNF, AKT1, STAT3, and inflammation-related pathways, including PI3K and MAPK. This study established an efficient and reliable strategy for identifying Chinese herbal medicine components and analyzing their in vivo metabolism, providing scientific evidence for the pharmacodynamic basis and mechanism of action of SEHP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
大模型应助佩里里采纳,获得10
2秒前
解愚志给cuidalice的求助进行了留言
2秒前
浮浮世世发布了新的文献求助10
3秒前
wy.he应助甘振豪采纳,获得10
3秒前
畅哥完成签到,获得积分10
4秒前
我是老大应助酷炫的初蝶采纳,获得10
4秒前
4秒前
楼不正完成签到,获得积分10
4秒前
qiu发布了新的文献求助10
5秒前
6秒前
韩凡发布了新的文献求助10
6秒前
完美世界应助shinn采纳,获得10
6秒前
6秒前
EL发布了新的文献求助10
7秒前
7秒前
carl完成签到,获得积分10
7秒前
万能图书馆应助xxxxxliang采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
杂化轨道退役研究员完成签到,获得积分10
9秒前
打打应助忧郁的大神采纳,获得10
10秒前
麦瑜小昕完成签到,获得积分10
10秒前
10秒前
10秒前
wanci应助cling采纳,获得10
10秒前
锋宇完成签到,获得积分10
10秒前
10秒前
hanliulaixi发布了新的文献求助10
11秒前
LINYZ发布了新的文献求助10
11秒前
Lucas应助熊猫奇思采纳,获得10
12秒前
清脆大门发布了新的文献求助10
12秒前
13秒前
星辰大海应助Exotic采纳,获得10
13秒前
Echo发布了新的文献求助10
13秒前
14秒前
Evolution完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751919
求助须知:如何正确求助?哪些是违规求助? 5471387
关于积分的说明 15372166
捐赠科研通 4891119
什么是DOI,文献DOI怎么找? 2630143
邀请新用户注册赠送积分活动 1578330
关于科研通互助平台的介绍 1534331