A New Contrastive GAN With Data Augmentation for Surface Defect Recognition Under Limited Data

过度拟合 超球体 深度学习 计算机科学 模式识别(心理学) 人工智能 人工神经网络
作者
Zongwei Du,Liang Gao,Xinyu Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:52
标识
DOI:10.1109/tim.2022.3232649
摘要

Surface defect recognition (SDC) is essential in intelligent manufacturing. Deep learning (DL) is a research hotspot in SDC. Limited defective samples are available in most real-world cases, which poses challenges for DL methods. Given such circumstances, generating defective samples by generative adversarial networks (GANs) is applied. However, insufficient samples and high-frequency texture details in defects make GANs very hard to train, yield mode collapse, and poor image quality, which can further impact SDC. To solve these problems, this article proposes a new GAN called contrastive GAN, which can be trained to generate diverse defects with only extremely limited samples. Specifically, a shared data augmentation (SDA) module is proposed for avoiding overfitting. Then, a feature attention matching (FAM) module is proposed to align features for improving the quality of generated images. Finally, a contrastive loss based on hypersphere is employed to constrain GANs to generate images that differ from the traditional transform. Experiments show that the proposed GAN generates defective images with higher quality and lower variance between real defects compared to other GANs. Synthetic images contribute to pretrained DL networks with accuracies of up to 95.00%–99.56% for Northeastern University (NEU) datasets of different sizes and 91.84% for printed circuit board (PCB) cases, which proves the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
等待的鸡翅完成签到,获得积分10
1秒前
英姑应助明理的沛珊采纳,获得10
2秒前
2秒前
2秒前
开朗紫完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
筱姐姐发布了新的文献求助10
4秒前
4秒前
迷人的长颈鹿应助薛文采纳,获得10
4秒前
4秒前
张紫茹完成签到,获得积分10
5秒前
今天学习了吗完成签到,获得积分10
5秒前
面包发布了新的文献求助10
5秒前
新垣结衣完成签到,获得积分10
6秒前
岳岳岳发布了新的文献求助10
6秒前
龙仔完成签到 ,获得积分10
6秒前
7秒前
宋莹发布了新的文献求助10
7秒前
正在发布了新的文献求助10
9秒前
9秒前
Ava应助ANDW采纳,获得10
10秒前
12秒前
灵巧的嚣发布了新的文献求助30
12秒前
杨成完成签到,获得积分10
12秒前
紧张的友灵完成签到 ,获得积分10
13秒前
英勇的灯泡完成签到,获得积分20
13秒前
核桃发布了新的文献求助10
14秒前
15秒前
善良以蕊完成签到,获得积分20
15秒前
15秒前
ASDS完成签到,获得积分10
16秒前
英俊的铭应助魔幻的可乐采纳,获得10
16秒前
迷路的翼发布了新的文献求助10
16秒前
彭于晏应助风清扬采纳,获得10
18秒前
FashionBoy应助柚子采纳,获得10
19秒前
Sinner关注了科研通微信公众号
20秒前
打打应助不安的宛丝采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474408
求助须知:如何正确求助?哪些是违规求助? 4576176
关于积分的说明 14357024
捐赠科研通 4504098
什么是DOI,文献DOI怎么找? 2467989
邀请新用户注册赠送积分活动 1455721
关于科研通互助平台的介绍 1429693