亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Adaptive Differential Evolution by Natural Evolution Strategies

差异进化 进化算法 计算机科学 水准点(测量) 进化计算 人工神经网络 控制器(灌溉) 自适应控制 人工智能 机器学习 控制(管理) 农学 大地测量学 生物 地理
作者
Haotian Zhang,Jianyong Sun,Kay Chen Tan,Zongben Xu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (3): 872-886 被引量:12
标识
DOI:10.1109/tetci.2022.3210927
摘要

Adaptive parameter control is critical in the design and application of evolutionary algorithm (EA), so does in differential evolution. In the past decade, many adaptive evolutionary algorithms have been proposed, in which online information collected until current generation during the evolutionary search procedure is used to determine the algorithmic parameters for the next generation. Recent studies often assume that the algorithmic parameters follow some distributions, while the distributions' parameters (called hyper-parameters) are updated by the collected information. Performances of these adaptive EAs depend highly on the hyper-parameters. Notice that the experiences obtained from optimizing some related problems could provide useful guidelines on how to adaptively control the distributions' parameters. However, few existing studies sufficiently used such experiences. To fill the gap, we propose a general framework for adaptive parameter control by modeling its evolution procedure as a Markov decision process. In the framework, a neural network is employed to act as the controller. The natural evolution strategies is applied to train the neural network. The proposed framework is applied on two well-known differential evolutions (DEs), namely JADE and LSHADE. By incorporating the learned controller, two DEs, named JADE/AC and LSHADE/AC, are formed. Experimental results on the CEC 2018 benchmark suite show that in general JADE/AC and LSHADE/AC perform significantly better than their counterparts. Moreover, in comparison with some well-known EAs including three suggested best DEs in a review paper (including LSHADE, cDE and CoBiDE), the championship algorithm in the CEC 2018 competitions, a recently-developed learnable DE and recently proposed DEs, our study shows that LSHADE/AC performs the best amongst them without sacrificing much computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SIREN应助复杂板凳采纳,获得10
刚刚
赘婿应助haha采纳,获得10
59秒前
haha完成签到,获得积分10
1分钟前
1分钟前
1分钟前
涂楚捷发布了新的文献求助10
1分钟前
涂楚捷完成签到,获得积分10
2分钟前
ASZXDW完成签到,获得积分10
2分钟前
ZWTH完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
奔跑的蒲公英完成签到,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
一丢丢完成签到 ,获得积分10
4分钟前
fsznc完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
6分钟前
ASZXDW发布了新的文献求助10
6分钟前
复杂板凳发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
深情安青应助Aurora采纳,获得10
7分钟前
顾子墨发布了新的文献求助10
7分钟前
7分钟前
lxz发布了新的文献求助20
8分钟前
9分钟前
9分钟前
9分钟前
Aurora发布了新的文献求助10
9分钟前
Aurora完成签到,获得积分10
9分钟前
9分钟前
cacaldon完成签到,获得积分10
9分钟前
葱饼完成签到 ,获得积分10
10分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833784
求助须知:如何正确求助?哪些是违规求助? 3376248
关于积分的说明 10492410
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771815