Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients

模式识别(心理学) 支持向量机 体素 放射基因组学 人工智能 直方图 突变 医学 计算机科学 图像(数学) 生物 遗传学 基因 无线电技术
作者
Kenta Ninomiya,Hidetaka Arimura,Kentaro Tanaka,Wai Yee Chan,Yutaro Kabata,Shinichi Mizuno,Nadia Fareeda Muhammad Gowdh,Nur Adura Yaakup,Chong Kin Liam,Chee-Shee Chai,Kwan Hoong Ng
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:236: 107544-107544 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107544
摘要

To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助samifranco采纳,获得10
刚刚
1秒前
优雅狗完成签到,获得积分10
2秒前
2秒前
田様应助子慕i采纳,获得10
3秒前
壮观的夏云完成签到,获得积分10
4秒前
万能图书馆应助sns八丘采纳,获得10
4秒前
沐青完成签到,获得积分10
4秒前
Kyle发布了新的文献求助10
4秒前
搜集达人应助喝牛奶de猪采纳,获得20
4秒前
5秒前
xLi完成签到,获得积分10
6秒前
小马甲应助22222采纳,获得10
7秒前
北北完成签到,获得积分10
7秒前
7秒前
8秒前
彩色夜阑完成签到,获得积分10
8秒前
小二郎应助racill采纳,获得30
9秒前
无花果应助熠烁采纳,获得20
9秒前
9秒前
chellyer完成签到,获得积分10
10秒前
123发布了新的文献求助10
11秒前
iuun发布了新的文献求助10
11秒前
烂番茄完成签到 ,获得积分10
11秒前
11秒前
13秒前
13秒前
lyt010307发布了新的文献求助10
13秒前
鲁俊旺完成签到,获得积分10
14秒前
14秒前
15秒前
口腔飞飞完成签到 ,获得积分10
15秒前
sns八丘发布了新的文献求助10
16秒前
kyawawa完成签到,获得积分10
16秒前
123完成签到,获得积分10
16秒前
可可西里发布了新的文献求助10
18秒前
zxhyqq发布了新的文献求助10
19秒前
传奇3应助羽墨空空采纳,获得10
21秒前
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784142
求助须知:如何正确求助?哪些是违规求助? 3329244
关于积分的说明 10241014
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671268
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759250