A Pyramid Fusion MLP for Dense Prediction

人工智能 模式识别(心理学) 计算机科学 融合 棱锥(几何) 计算机视觉 图像融合 图像处理 数学 图像(数学) 哲学 语言学 几何学
作者
Qiuyu Huang,Zequn Jie,Lin Ma,Li Shen,Shenqi Lai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 455-467
标识
DOI:10.1109/tip.2025.3526054
摘要

Recently, MLP-based architectures have achieved competitive performance with convolutional neural networks (CNNs) and vision transformers (ViTs) across various vision tasks. However, most MLP-based methods introduce local feature interactions to facilitate direct adaptation to downstream tasks, thereby lacking the ability to capture global visual dependencies and multi-scale context, ultimately resulting in unsatisfactory performance on dense prediction. This paper proposes a competitive and effective MLP-based architecture called Pyramid Fusion MLP (PFMLP) to address the above limitation. Specifically, each block in PFMLP introduces multi-scale pooling and fully connected layers to generate feature pyramids, which are subsequently fused using up-sample layers and an additional fully connected layer. Employing different down-sample rates allows us to obtain diverse receptive fields, enabling the model to simultaneously capture long-range dependencies and fine-grained cues, thereby exploiting the potential of global context information and enhancing the spatial representation power of the model. Our PFMLP is the first lightweight MLP to obtain comparable results with state-of-the-art CNNs and ViTs on the ImageNet-1K benchmark.With larger FLOPs, it exceeds state-of-the-art CNNs, ViTs, and MLPs under similar computational complexity. Furthermore, experiments in object detection, instance segmentation, and semantic segmentation demonstrate that the visual representation acquired from PFMLP can be seamlessly transferred to downstream tasks, producing competitive results. All materials contain the training codes and logs are released at https://github.com/huangqiuyu/PFMLP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mini发布了新的文献求助10
2秒前
Jasper应助KK采纳,获得10
2秒前
陈锦鲤完成签到,获得积分10
2秒前
ZY发布了新的文献求助10
3秒前
BINGBING应助健壮的绿凝采纳,获得20
4秒前
小蛙蛙大王完成签到,获得积分10
4秒前
张怡博完成签到 ,获得积分10
6秒前
6秒前
风趣的不悔关注了科研通微信公众号
8秒前
9秒前
10秒前
11秒前
爹爹发布了新的文献求助20
11秒前
13秒前
粽子完成签到,获得积分10
15秒前
morlison完成签到,获得积分10
15秒前
瀼瀼完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
19秒前
副掌门发布了新的文献求助10
21秒前
科研小白完成签到,获得积分10
22秒前
23秒前
衡阳完成签到,获得积分10
23秒前
ying发布了新的文献求助10
23秒前
三叔完成签到,获得积分0
25秒前
tyro发布了新的文献求助10
25秒前
mj发布了新的文献求助10
26秒前
26秒前
2025顺顺利利完成签到 ,获得积分10
29秒前
不要延毕发布了新的文献求助10
29秒前
共享精神应助lmt采纳,获得30
29秒前
陈锦鲤发布了新的文献求助10
29秒前
可爱的函函应助副掌门采纳,获得10
32秒前
疏木51完成签到,获得积分10
33秒前
英俊的铭应助陈有游采纳,获得10
33秒前
积极的忆曼完成签到,获得积分10
34秒前
36秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440