Age against the machine—susceptibility of large language models to cognitive impairment: cross sectional analysis

蒙特利尔认知评估 斯特罗普效应 认知 考试(生物学) 心理学 认知心理学 执行职能 认知障碍 精神科 生物 古生物学
作者
Roy Dayan,Benjamin Uliel,Gal Koplewitz
标识
DOI:10.1136/bmj-2024-081948
摘要

Abstract Objective To evaluate the cognitive abilities of the leading large language models and identify their susceptibility to cognitive impairment, using the Montreal Cognitive Assessment (MoCA) and additional tests. Design Cross sectional analysis. Setting Online interaction with large language models via text based prompts. Participants Publicly available large language models, or “chatbots”: ChatGPT versions 4 and 4o (developed by OpenAI), Claude 3.5 “Sonnet” (developed by Anthropic), and Gemini versions 1 and 1.5 (developed by Alphabet). Assessments The MoCA test (version 8.1) was administered to the leading large language models with instructions identical to those given to human patients. Scoring followed official guidelines and was evaluated by a practising neurologist. Additional assessments included the Navon figure, cookie theft picture, Poppelreuter figure, and Stroop test. Main outcome measures MoCA scores, performance in visuospatial/executive tasks, and Stroop test results. Results ChatGPT 4o achieved the highest score on the MoCA test (26/30), followed by ChatGPT 4 and Claude (25/30), with Gemini 1.0 scoring lowest (16/30). All large language models showed poor performance in visuospatial/executive tasks. Gemini models failed at the delayed recall task. Only ChatGPT 4o succeeded in the incongruent stage of the Stroop test. Conclusions With the exception of ChatGPT 4o, almost all large language models subjected to the MoCA test showed signs of mild cognitive impairment. Moreover, as in humans, age is a key determinant of cognitive decline: “older” chatbots, like older patients, tend to perform worse on the MoCA test. These findings challenge the assumption that artificial intelligence will soon replace human doctors, as the cognitive impairment evident in leading chatbots may affect their reliability in medical diagnostics and undermine patients’ confidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffffff发布了新的文献求助10
刚刚
1秒前
1秒前
123完成签到,获得积分10
1秒前
武雨珍发布了新的文献求助10
1秒前
zzmmlll完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
亲爱的融发布了新的文献求助10
4秒前
4秒前
realmoon发布了新的文献求助10
5秒前
weixiaosi发布了新的文献求助10
5秒前
5秒前
猫九发布了新的文献求助10
5秒前
leftarrow完成签到,获得积分10
5秒前
5秒前
小马甲应助简单紫寒采纳,获得10
6秒前
YiPeng发布了新的文献求助10
6秒前
活泼灵枫完成签到,获得积分10
6秒前
摩卡摩卡完成签到,获得积分10
6秒前
无花果应助喜悦的凉面采纳,获得10
7秒前
7秒前
幸运在我发布了新的文献求助10
7秒前
7秒前
虚幻心锁发布了新的文献求助10
8秒前
左傲蕾发布了新的文献求助10
8秒前
Cici发布了新的文献求助10
8秒前
小绵羊发布了新的文献求助10
8秒前
xcz完成签到,获得积分10
8秒前
日出时发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
彭于晏应助yelis采纳,获得10
11秒前
12秒前
12秒前
13秒前
亲爱的融完成签到,获得积分10
15秒前
孤独曲奇完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575