Development of individualized risk assessment models for predicting post‐traumatic epilepsy 1 and 2 years after moderate‐to‐severe traumatic brain injury: A traumatic brain injury model system study

创伤性脑损伤 癫痫 医学 精神科
作者
Nabil Awan,Raj G. Kumar,Shannon B. Juengst,Dominic DiSanto,Cynthia Harrison‐Felix,Kristen Dams-O’Connor,Mary Jo Pugh,Ross Zafonte,William C. Walker,Jerzy P. Szaflarski,Robert T. Krafty,Amy K. Wagner
出处
期刊:Epilepsia [Wiley]
标识
DOI:10.1111/epi.18210
摘要

Abstract Objective Although traumatic brain injury (TBI) and post‐traumatic epilepsy (PTE) are common, there are no prospective models quantifying individual epilepsy risk after moderate‐to‐severe TBI (msTBI). We generated parsimonious prediction models to quantify individual epilepsy risk between acute inpatient rehabilitation for individuals 2 years after msTBI. Methods We used data from 6089 prospectively enrolled participants (≥16 years) in the TBI Model Systems National Database. Of these, 4126 individuals had complete seizure data collected over a 2‐year period post‐injury. We performed a case‐complete analysis to generate multiple prediction models using least absolute shrinkage and selection operator logistic regression. Baseline predictors were used to assess 2‐year seizure risk (Model 1). Then a 2‐year seizure risk was assessed excluding the acute care variables (Model 2). In addition, we generated prognostic models predicting new/recurrent seizures during Year 2 post‐msTBI (Model 3) and predicting new seizures only during Year 2 (Model 4). We assessed model sensitivity when keeping specificity ≥.60, area under the receiver‐operating characteristic curve (AUROC), and AUROC model performance through 5‐fold cross‐validation (CV). Results Model 1 (73.8% men, 44.1 ± 19.7 years, 76.1% moderate TBI) had a model sensitivity = 76.00% and average AUROC = .73 ± .02 in 5‐fold CV. Model 2 had a model sensitivity = 72.16% and average AUROC = .70 ± .02 in 5‐fold CV. Model 3 had a sensitivity = 86.63% and average AUROC = .84 ± .03 in 5‐fold CV. Model 4 had a sensitivity = 73.68% and average AUROC = .67 ± .03 in 5‐fold CV. Cranial surgeries, acute care seizures, intracranial fragments, and traumatic hemorrhages were consistent predictors across all models. Demographic and mental health variables contributed to some models. Simulated, clinical examples model individual PTE predictions. Significance Using information available, acute‐care, and year‐1 post‐injury data, parsimonious quantitative epilepsy prediction models following msTBI may facilitate timely evidence‐based PTE prognostication within a 2‐year period. We developed interactive web‐based tools for testing prediction model external validity among independent cohorts. Individualized PTE risk may inform clinical trial development/design and clinical decision support tools for this population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王吉萍完成签到,获得积分10
1秒前
2秒前
浮游应助跳跃的谷丝采纳,获得10
5秒前
5秒前
加肥猫完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助30
6秒前
云不归发布了新的文献求助10
7秒前
Lucas应助Gavin啥也不会采纳,获得10
7秒前
万能图书馆应助guohuameike采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
雨0926应助科研通管家采纳,获得200
10秒前
Akim应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
周正杨应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得30
10秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
星辰大海应助执着书南采纳,获得10
11秒前
生动梦松应助甜美洋葱采纳,获得30
11秒前
13秒前
酷波er应助现代无极采纳,获得10
14秒前
无极微光应助tt采纳,获得20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4971362
求助须知:如何正确求助?哪些是违规求助? 4227598
关于积分的说明 13166997
捐赠科研通 4015580
什么是DOI,文献DOI怎么找? 2197427
邀请新用户注册赠送积分活动 1210345
关于科研通互助平台的介绍 1124798