A physics knowledge-based surrogate model framework for time-dependent slope deformation: Considering water effect and sliding states

变形(气象学) 替代模型 物理 岩土工程 地质学 数学 数学优化 气象学
作者
Wenyu Zhuang,Yaoru Liu,Kai Zhang,Qingchao Lyu,Shaokang Hou,Qiang Yang
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
卷期号:17 (9): 5416-5436 被引量:3
标识
DOI:10.1016/j.jrmge.2024.11.002
摘要

The surrogate model serves as an efficient simulation tool during the slope parameter inversion process. However, the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model. In this study, a novel physics knowledge-based surrogate model framework is proposed. In this framework, a Transformer module is employed to capture strain-driven softening-hardening physical mechanisms. Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain, which are not directly time-related, into intermediate latent features for physical loss calculation. Next, a multi-layer stacked GRU (gated recurrent unit) network is built to provide input interfaces for time-dependent intermediate latent features, hydraulic boundary conditions, and water-rock interaction degradation equations, with static parameters introduced via external fully-connected layers. Finally, a combined loss function is constructed to facilitate the collaborative training of physical and data loss, introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases. Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization, an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework. The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior, reducing errors by about 30 times compared to baseline models such as GRU and LSTM (long short-term memory), meeting the precision requirements for parameter inversion. Ablation experiments also confirmed the effectiveness of the framework. This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
首席或雪月完成签到,获得积分10
1秒前
赘婿应助xxx采纳,获得10
1秒前
华仔应助水123采纳,获得10
3秒前
科研通AI6应助rr123456采纳,获得30
3秒前
一个西藏发布了新的文献求助10
5秒前
yyq617569158完成签到,获得积分10
5秒前
5秒前
fz应助观澜采纳,获得20
6秒前
9秒前
daigang发布了新的文献求助30
11秒前
lpydz完成签到,获得积分10
11秒前
专注的水壶完成签到 ,获得积分10
11秒前
12秒前
李可以完成签到 ,获得积分10
12秒前
姗珊发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
拉长的花生完成签到,获得积分20
13秒前
14秒前
Surpass完成签到,获得积分10
14秒前
z_king_d_23完成签到,获得积分10
16秒前
XMC2022发布了新的文献求助10
17秒前
wujinwen发布了新的文献求助10
17秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
聪明凡之应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Mr_Wu应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
观澜完成签到,获得积分10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
专注的问寒应助科研通管家采纳,获得100
18秒前
Weilang发布了新的文献求助10
18秒前
xzz给xzz的求助进行了留言
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832