Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review

自愈水凝胶 材料科学 数码产品 柔性电子器件 可伸缩电子设备 导电聚合物 纳米技术 可穿戴技术 复合材料 聚合物 可穿戴计算机 计算机科学 电气工程 高分子化学 工程类 嵌入式系统
作者
Abdollah Hajalilou
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:30 (4): 905-905
标识
DOI:10.3390/molecules30040905
摘要

Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小慧完成签到,获得积分10
1秒前
4秒前
刘小雨发布了新的文献求助10
4秒前
科研通AI2S应助lp采纳,获得10
8秒前
qw1发布了新的文献求助10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
10秒前
11秒前
18秒前
20秒前
zdy发布了新的文献求助10
22秒前
程风破浪发布了新的文献求助10
24秒前
26秒前
lyj发布了新的文献求助10
26秒前
赘婿应助绿色心情采纳,获得10
26秒前
jenningseastera应助无奈天亦采纳,获得10
28秒前
Heidi完成签到,获得积分10
29秒前
31秒前
舒服的鱼完成签到 ,获得积分10
33秒前
华仔应助怡然的怀莲采纳,获得10
34秒前
lyj完成签到,获得积分10
35秒前
雷锋完成签到,获得积分10
39秒前
40秒前
无奈天亦完成签到,获得积分10
44秒前
songjing发布了新的文献求助10
44秒前
紫薯完成签到 ,获得积分10
47秒前
深情安青应助程风破浪采纳,获得10
48秒前
红油曲奇完成签到 ,获得积分10
49秒前
宋德宇完成签到,获得积分20
49秒前
Linda完成签到 ,获得积分10
50秒前
汉堡包应助Sunday采纳,获得10
53秒前
hh完成签到 ,获得积分10
56秒前
111完成签到 ,获得积分10
57秒前
jj完成签到,获得积分10
1分钟前
LL完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549