亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ProScale: Proactive Autoscaling for Microservice With Time-Varying Workload at the Edge

工作量 计算机科学 微服务 可扩展性 杠杆(统计) GSM演进的增强数据速率 边缘计算 分布式计算 跟踪(心理语言学) 服务器 实时计算 计算机网络 云计算 数据库 操作系统 人工智能 哲学 语言学
作者
Ke Cheng,Sheng Zhang,Chenghong Tu,Xiaohang Shi,Zhaoheng Yin,Sanglu Lu,Yu Liang,Qing Gu
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 1294-1312 被引量:27
标识
DOI:10.1109/tpds.2023.3238429
摘要

Deploying microservice instances on the edge device close to end users can provide on-site processing thus reducing request response time. Each microservice has multiple instances that can process requests in parallel. To achieve high processing efficiency, the number of these instances is scaled according to the workload, which is also known as autoscaling. Previous studies of microservice autoscaling in the edge computing environment lack in-depth consideration of time-varying workload, they assume that the workload of each microservice always depends on that of its upstream. However, through an analysis of Alibaba's microservice trace with hundreds of millions of records, we find that the assumption is impractical thus hurting autoscaling effectiveness. To solve this problem, we propose ProScale, a prediction-driven proactive autoscaling framework for microservices at the edge. ProScale proactively forecasts the workload for each individual microservice per timeslot. Then it utilizes an efficient online algorithm to leverage the predicting results to determine the instance number for each microservice jointly with making placement decisions. For each microservice instance deployed on the edge device, ProScale handles burst requests using a designed offloading strategy. In addition, ProScale can also balance the load for multiple instances of each microservice. Extensive trace-driven experiments show that ProScale has great scalability. It can reduce average response time by 96.7% and resource usage by 96.5% compared with existing strategies and designed baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
17秒前
zjcbk985发布了新的文献求助10
21秒前
田様应助zjcbk985采纳,获得10
34秒前
55秒前
zjcbk985发布了新的文献求助10
1分钟前
Evian79167应助lmm采纳,获得10
1分钟前
XiaoLiu应助科研通管家采纳,获得20
1分钟前
万能图书馆应助zjcbk985采纳,获得10
1分钟前
1分钟前
1分钟前
平底锅攻击完成签到 ,获得积分10
1分钟前
tysun发布了新的文献求助10
1分钟前
1分钟前
科研中,勿扰完成签到,获得积分10
2分钟前
我是老大应助zjcbk985采纳,获得10
2分钟前
2分钟前
研友_VZG7GZ应助krajicek采纳,获得30
2分钟前
2分钟前
xiaorui完成签到,获得积分10
2分钟前
zjcbk985发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Tom完成签到 ,获得积分10
3分钟前
3分钟前
淡定的松子完成签到,获得积分20
3分钟前
3分钟前
3分钟前
krajicek发布了新的文献求助30
3分钟前
3分钟前
英姑应助zjcbk985采纳,获得10
4分钟前
唐小刚完成签到,获得积分10
4分钟前
4分钟前
李志全完成签到 ,获得积分10
4分钟前
zjcbk985发布了新的文献求助10
4分钟前
Ashao完成签到 ,获得积分10
4分钟前
zjcbk985完成签到,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484560
求助须知:如何正确求助?哪些是违规求助? 3940347
关于积分的说明 12220411
捐赠科研通 3595798
什么是DOI,文献DOI怎么找? 1977569
邀请新用户注册赠送积分活动 1014601
科研通“疑难数据库(出版商)”最低求助积分说明 907767