ProScale: Proactive Autoscaling for Microservice With Time-Varying Workload at the Edge

工作量 计算机科学 微服务 可扩展性 杠杆(统计) GSM演进的增强数据速率 边缘计算 分布式计算 跟踪(心理语言学) 服务器 实时计算 计算机网络 云计算 数据库 操作系统 人工智能 哲学 语言学
作者
Ke Cheng,Sheng Zhang,Chenghong Tu,Xiaohang Shi,Zhaoheng Yin,Sanglu Lu,Yu Liang,Qing Gu
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 1294-1312 被引量:27
标识
DOI:10.1109/tpds.2023.3238429
摘要

Deploying microservice instances on the edge device close to end users can provide on-site processing thus reducing request response time. Each microservice has multiple instances that can process requests in parallel. To achieve high processing efficiency, the number of these instances is scaled according to the workload, which is also known as autoscaling. Previous studies of microservice autoscaling in the edge computing environment lack in-depth consideration of time-varying workload, they assume that the workload of each microservice always depends on that of its upstream. However, through an analysis of Alibaba's microservice trace with hundreds of millions of records, we find that the assumption is impractical thus hurting autoscaling effectiveness. To solve this problem, we propose ProScale, a prediction-driven proactive autoscaling framework for microservices at the edge. ProScale proactively forecasts the workload for each individual microservice per timeslot. Then it utilizes an efficient online algorithm to leverage the predicting results to determine the instance number for each microservice jointly with making placement decisions. For each microservice instance deployed on the edge device, ProScale handles burst requests using a designed offloading strategy. In addition, ProScale can also balance the load for multiple instances of each microservice. Extensive trace-driven experiments show that ProScale has great scalability. It can reduce average response time by 96.7% and resource usage by 96.5% compared with existing strategies and designed baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HXuer完成签到,获得积分10
1秒前
1秒前
1秒前
深情安青应助飘落的樱花采纳,获得10
1秒前
枫溪完成签到,获得积分10
1秒前
晴天发布了新的文献求助10
1秒前
浮游应助瘦瘦寻菡采纳,获得10
2秒前
2秒前
李健应助一颗好困芽采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
天生圣人完成签到,获得积分10
4秒前
4秒前
小二郎应助清子采纳,获得10
4秒前
5秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
5秒前
机智的瑀发布了新的文献求助10
6秒前
Darline完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
Cssss完成签到,获得积分10
8秒前
轻松博超发布了新的文献求助10
8秒前
8秒前
动听的囧完成签到,获得积分10
8秒前
Ayan完成签到,获得积分10
9秒前
烂漫成仁完成签到,获得积分10
9秒前
XuZ发布了新的文献求助200
9秒前
梦璃发布了新的文献求助10
9秒前
9秒前
9秒前
潘辉发布了新的文献求助10
9秒前
9秒前
yourenpkma123完成签到,获得积分10
10秒前
大方荷花发布了新的文献求助10
10秒前
10秒前
闫诺完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055