Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing

计算机科学 GSM演进的增强数据速率 边缘计算 分布式计算 信号处理 无线 无线网络 无线传感器网络 计算机网络 人工智能 电信 雷达
作者
Wei Xu,Zhaohui Yang,Derrick Wing Kwan Ng,Marco Levorato,Yonina C. Eldar,Mérouane Debbah
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 9-39 被引量:301
标识
DOI:10.1109/jstsp.2023.3239189
摘要

To process and transfer large amounts of data in emerging wireless services, it has become increasingly appealing to exploit distributed data communication and learning. Specifically, edge learning (EL) enables local model training on geographically disperse edge nodes and minimizes the need for frequent data exchange. However, the current design of separating EL deployment and communication optimization does not yet reap the promised benefits of distributed signal processing, and sometimes suffers from excessive signalling overhead, long processing delay, and unstable learning convergence. In this paper, we provide an overview on practical distributed EL techniques and their interplay with advanced communication optimization designs. In particular, typical performance metrics for dual-functional learning and communication networks are discussed. Also, recent achievements of enabling techniques for the dual-functional design are surveyed with exemplifications from the mutual perspectives of "communications for learning" and "learning for communications." The application of EL techniques within a variety of future communication systems are also envisioned for beyond 5G (B5G) wireless networks. For the application in goal-oriented semantic communication, we present a first mathematical model of the goal-oriented source entropy as an optimization problem. In addition, from the viewpoint of information theory, we identify fundamental open problems of characterizing rate regions for communication networks supporting distributed learning-and-computing tasks. We also present technical challenges as well as emerging application opportunities in this field, with the aim of inspiring future research and promoting widespread developments of EL in B5G.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
4秒前
吕不韦发布了新的文献求助10
5秒前
nicolaslcq发布了新的文献求助30
7秒前
7秒前
小蜗牛发布了新的文献求助10
8秒前
西奥完成签到 ,获得积分10
8秒前
郦涔发布了新的文献求助10
9秒前
香蕉觅云应助兰lalan采纳,获得10
9秒前
14秒前
fqf完成签到,获得积分20
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
小蜗牛发布了新的文献求助10
19秒前
哈哈哈哈完成签到 ,获得积分10
20秒前
20秒前
5年科研3年毕业完成签到,获得积分10
21秒前
21秒前
gomm发布了新的文献求助10
21秒前
22秒前
25秒前
25秒前
CipherSage应助jbhb采纳,获得10
26秒前
26秒前
小马甲应助许嘘嘘嘘嘘采纳,获得30
30秒前
JUNJIU发布了新的文献求助20
30秒前
31秒前
云朵吖完成签到 ,获得积分10
33秒前
一一完成签到 ,获得积分10
36秒前
屿杓发布了新的文献求助50
37秒前
jia完成签到 ,获得积分10
38秒前
专一的黄豆完成签到 ,获得积分10
38秒前
diudiu关注了科研通微信公众号
39秒前
豆浆来点蒜泥完成签到,获得积分10
39秒前
达不溜qp完成签到 ,获得积分10
42秒前
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867218
求助须知:如何正确求助?哪些是违规求助? 3409493
关于积分的说明 10663865
捐赠科研通 3133679
什么是DOI,文献DOI怎么找? 1728374
邀请新用户注册赠送积分活动 832984
科研通“疑难数据库(出版商)”最低求助积分说明 780514